Search results for: artificial photosynthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2194

Search results for: artificial photosynthesis

2164 Technological Advancement of Socratic Supported by Artificial Intelligence

Authors: Amad Nasseef, Layan Zugail, Joud Musalli, Layan Shaikan

Abstract:

Technology has become an essential part of our lives. We have also witnessed the significant emergence of artificial intelligence in so many areas. Throughout this research paper, the following will be discussed: an introduction on AI and Socratic application, we also did an overview on the application’s background and other similar applications, as for the methodology, we conducted a survey to collect results on users experience in using the Socratic application. The results of the survey strongly supported the usefulness and interest of users in the Socratic application. Finally, we concluded that Socratic is a meaningful tool for learning purposes due to it being supported by artificial intelligence, which made the application easy to use and familiar to users to deal with through a click of a button.

Keywords: Socratic, artificial intelligence, application, features

Procedia PDF Downloads 217
2163 Artificial Intelligence Ethics: What Business Leaders Need to Consider for the Future

Authors: Kylie Leonard

Abstract:

Investment in artificial intelligence (AI) can be an attractive opportunity for business leaders as there are many easy-to-see benefits. These benefits include task completion rates, overall cost, and better forecasting. Business leaders are often unaware of the challenges that can accompany AI, such as data center costs, access to data, employee acceptance, and privacy concerns. In addition to the benefits and challenges of AI, it is important to practice AI ethics to ensure the safe creation of AI. AI ethics include aspects of algorithm bias, limits in transparency, and surveillance. To be a good business leader, it is critical to address all the considerations involving the challenges of AI and AI ethics.

Keywords: artificial intelligence, artificial intelligence ethics, business leaders, business concerns

Procedia PDF Downloads 147
2162 Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory

Authors: Priyanka Bhatnagar, Malkeshkumar Patel, Joondong Kim, Joonpyo Hong

Abstract:

Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics.

Keywords: transparent, photovoltaics, thermal memory, artificial skin, thermoreceptor

Procedia PDF Downloads 109
2161 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator

Authors: Sameer Ansari, Suhas Nitsure

Abstract:

Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and  saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.

Keywords: biomimicry, green technology, maglev car elevator, civil engineering

Procedia PDF Downloads 576
2160 Skills Needed Amongst Secondary School Students for Artificial Intelligence Development in Southeast Nigeria

Authors: Chukwuma Mgboji

Abstract:

Since the advent of Artificial Intelligence, robots have become a major stay in developing societies. Robots are deployed in Education, Health, Food and in other spheres of life. Nigeria a country in West Africa has a very low profile in the advancement of Artificial Intelligence especially in the grass roots. The benefits of Artificial intelligence are not fully maximised and harnessed. Advances in artificial intelligence are perceived as impossible or observed as irrelevant. This study seeks to ascertain the needed skills for the development of artificialintelligence amongst secondary schools in Nigeria. The study focused on South East Nigeria with Five states namely Imo, Abia, Ebonyi, Anambra and Enugu. The sample size is 1000 students drawn from Five Government owned Universities offering Computer Science, Computer Education, Electronics Engineering across the Five South East states. Survey method was used to solicit responses from respondents. The findings from the study identified mathematical skills, analytical skills, problem solving skills, computing skills, programming skills, algorithm skills amongst others. The result of this study to the best of the author’s knowledge will be highly beneficial to all stakeholders involved in the advancements and development of artificial intelligence.

Keywords: artificial intelligence, secondary school, robotics, skills

Procedia PDF Downloads 152
2159 Artificial Intelligence for All: Artificial Intelligence Education for K-12

Authors: Yiqiao Yin

Abstract:

Many scholars and educators have dedicated their lives in K12 education system and there has been an exploding amount of attention to implement technical foundations for Artificial Intelligence Education for high school and precollege level students. This paper focuses on the development and use of resources to support K-12 education in Artificial Intelligence (AI). The author and his team have more than three years of experience coaching students from pre-college level age from 15 to 18. This paper is a culmination of the experience and proposed online tools, software demos, and structured activities for high school students. The paper also addresses a portfolio of AI concepts as well as the expected learning outcomes. All resources are provided with online videos and Github repositories for immediate use.

Keywords: K12 education, AI4ALL, pre-college education, pre-college AI

Procedia PDF Downloads 133
2158 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art

Procedia PDF Downloads 292
2157 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 189
2156 Using Information Theory to Observe Natural Intelligence and Artificial Intelligence

Authors: Lipeng Zhang, Limei Li, Yanming Pearl Zhang

Abstract:

This paper takes a philosophical view as axiom, and reveals the relationship between information theory and Natural Intelligence and Artificial Intelligence under real world conditions. This paper also derives the relationship between natural intelligence and nature. According to communication principle of information theory, Natural Intelligence can be divided into real part and virtual part. Based on information theory principle that Information does not increase, the restriction mechanism of Natural Intelligence creativity is conducted. The restriction mechanism of creativity reveals the limit of natural intelligence and artificial intelligence. The paper provides a new angle to observe natural intelligence and artificial intelligence.

Keywords: natural intelligence, artificial intelligence, creativity, information theory, restriction of creativity

Procedia PDF Downloads 385
2155 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 19
2154 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 440
2153 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile

Procedia PDF Downloads 152
2152 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage

Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad

Abstract:

Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.

Keywords: yoghurt, artificial sweetener, storage, quality parameters

Procedia PDF Downloads 476
2151 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 477
2150 Response Development of larvae Portunus pelagicus to Artificial Feeding Predigest

Authors: Siti Aslamyah, Yushinta Fujaya, Okto Rimaldi

Abstract:

One of the problems faced in the crab hatchery operations is the reliance on the use of natural feed. This study aims to analyze the response of larval development and determine the initial stages crab larvae begin to fully able to accept artificial feeding predigest with the help of probiotic Bacillus sp. The experiment was conducted in June 2014 through July 2014 at the location of the scale backyard hatcheries, Bojo village Mallusettasi sub-district, district Barru. This study was conducted in two stages larval rearing. The first stage is designed in a completely randomized design with 5 treatments and each with 3 repetitions, ie, without the use of artificial feeding; predigest feed given from zoea 1 - megalopa; predigest feed given since zoea 2 - megalopa; predigest feed given from zoea 3 - megalopa; and feed predigest given since zoea 4 - megalopa. The second stage of the two treatments, i.e. comparing artificial feeding without and with predigest. The results showed that the artificial feeding predigest able to replace the use of natural feed started zoea 3 generated based on the survival rate. Artificial feeding predigest provide a higher survival rate (16%) compared to artificial diets without predigest only 10.8%. However, feed predigest not give a different effect on the rate of development of stadia. Cell activity in larvae that received artificial feed predigest higher with RNA-DNA ratio of 8.88 compared with no predigest only 5:36. This research is very valuable information for crab hatchery hatchery scale households have limitations in preparing natural food.

Keywords: artificial feeding, development of stadia, larvae Portunus pelagicus, predigest

Procedia PDF Downloads 533
2149 PhotoRoom App

Authors: Nouf Nasser, Nada Alotaibi, Jazzal Kandiel

Abstract:

This research study is about the use of artificial intelligence in PhotoRoom. When an individual selects a photo, PhotoRoom automagically removes or separates the background from other parts of the photo through the use of artificial intelligence. This will allow an individual to select their desired background and edit it as they wish. The methodology used was an observation, where various reviews and parts of the app were observed. The review section's findings showed that many people actually like the app, and some even rated it five stars. The conclusion was that PhotoRoom is one of the best photo editing apps due to its speed and accuracy in removing backgrounds.

Keywords: removing background, app, artificial intelligence, machine learning

Procedia PDF Downloads 199
2148 The Function of Polycomb Repressive Complex 2 (PRC2) In Plant Retrograde Signaling Pathway

Authors: Mingxi Zhou, Jiří Kubásek, Iva Mozgová

Abstract:

In Arabidopsis thaliana, histone 3 lysine 27 tri-methylation catalysed byPRC2 is playing essential functions in the regulation of plant development, growth, and reproduction[1-2]. Despite numerous studies related to the role of PRC2 in developmental control, how PRC2 works in the operational control in plants is unknown. In the present, the evidence that PRC2 probably participates in the regulation of retrograde singalling pathway in Arabidopsisis found. Firstly, we observed that the rosette size and biomass in PRC2-depletion mutants (clf-29 and swn-3) is significantly higher than WTunder medium light condition (ML: 125 µmol m⁻² s⁻²), while under medium high light condition (MHL: 300 µmol m⁻² s-2), the increase was reverse. Under ML condition, the photosynthesis related parameters determined by fluorCam did not show significant differences between WT and mutants, while the pigments concentration increased in the leaf of PRC2-depletion mutants, especially in swn. The dynamic of light-responsive genes and circadian clock genes expression by RT-qPCRwithin 24 hours in the mutants were comparable to WT. However, we observed upregulation of photosynthesis-associated nuclear genes in the PRC2-depletion mutants under chloroplast damaging condition (treated by lincomycin), corresponding to the so-called genome uncoupled (gun) phenotype. Here, we will present our results describing these phenotypes and our suggestion and outlook for studying the involvement of PRC2 in chloroplast-to-nucleus retrograde signalling.

Keywords: PRC2, retrograde signalling, light acclimation, photosyntheis

Procedia PDF Downloads 109
2147 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers

Procedia PDF Downloads 710
2146 English Learning Speech Assistant Speak Application in Artificial Intelligence

Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri

Abstract:

Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.

Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation

Procedia PDF Downloads 106
2145 A South African Perspective on Artificial Intelligence and Inventorship Status

Authors: Meshandren Naidoo

Abstract:

An artificial intelligence (AI) system named DABUS 2021 made headlines when it became the very first AI system to be listed in a patent which was then granted by the South African patent office. This grant raised much criticism. The question that this research intends to answer is (1) whether, in South African patent law, an AI can be an inventor. This research finds that despite South African law not recognizing an AI as a legal person and despite the legislation not explicitly allowing AI to be inventors, a legal interpretative exercise would allow AI inventorship.

Keywords: artificial intelligence, creativity, innovation, law

Procedia PDF Downloads 140
2144 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
2143 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean

Authors: Tzan-Chain Lee

Abstract:

Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.

Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development

Procedia PDF Downloads 148
2142 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 609
2141 The Relationship Between Artificial Intelligence, Data Science, and Privacy

Authors: M. Naidoo

Abstract:

Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.

Keywords: artificial intelligence, data science, law, policy

Procedia PDF Downloads 106
2140 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
2139 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects

Authors: Diego De Almeida Pereira, Diana Borchenko

Abstract:

Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.

Keywords: environmental psychology, architecture, neural networks, human and social well-being

Procedia PDF Downloads 495
2138 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts

Authors: Nety Trisnawaty, Mirna Febriani

Abstract:

The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.

Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts

Procedia PDF Downloads 279
2137 Artificial Intelligance Features in Canva

Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi

Abstract:

Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.

Keywords: artificial intelligence, canva, features, users, satisfaction

Procedia PDF Downloads 106
2136 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Jia Zhang, Fengmei Yao, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain

Procedia PDF Downloads 375
2135 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets

Authors: Yosra Mefteh Rekik

Abstract:

A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.

Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance

Procedia PDF Downloads 438