Search results for: artificial agency
1101 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 2251100 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water
Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet
Abstract:
This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III
Procedia PDF Downloads 1661099 Central African Republic Government Recruitment Agency Based on Identity Management and Public Key Encryption
Authors: Koyangbo Guere Monguia Michel Alex Emmanuel
Abstract:
In e-government and especially recruitment, many researches have been conducted to build a trustworthy and reliable online or application system capable to process users or job applicant files. In this research (Government Recruitment Agency), cloud computing, identity management and public key encryption have been used to management domains, access control authorization mechanism and to secure data exchange between entities for reliable procedure of processing files.Keywords: cloud computing network, identity management systems, public key encryption, access control and authorization
Procedia PDF Downloads 3581098 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System
Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen
Abstract:
This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.Keywords: artificial immune system, collaborative filtering, recommendation system, similarity
Procedia PDF Downloads 5351097 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm
Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani
Abstract:
This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis
Procedia PDF Downloads 3361096 Tracking Maximum Power Point Utilizing Artificial Immunity System
Authors: Marwa Ahmed Abd El Hamied
Abstract:
In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods
Procedia PDF Downloads 4271095 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 1881094 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration
Authors: Fateme Aysin Anka, Farzad Kiani
Abstract:
Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence
Procedia PDF Downloads 861093 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method
Procedia PDF Downloads 1981092 A Review on Artificial Neural Networks in Image Processing
Authors: B. Afsharipoor, E. Nazemi
Abstract:
Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN
Procedia PDF Downloads 4061091 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis
Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam
Abstract:
This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning
Procedia PDF Downloads 771090 Effectiveness of Management Transfer Programs for Managing Irrigation Resources in Developing Countries: A Case Study of Farmer- and Agency-Managed Schemes from Nepal
Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson
Abstract:
Irrigation management transfer has been taken as the important policy instrument for effective irrigation resource management in many developing countries. The change in governance of the irrigation schemes for its day-to-day operation and maintenance has been centered in recent Nepalese irrigation policies also. However, both farmer- and agency-managed irrigation schemes in Nepal are performing well below than expected. This study tries to link the present concerns of poor performance of both forms of schemes with the institutions for its operation and management. Two types of surveys, management and farm surveys; were conducted as a case study in the command area of Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmer-managed) of Chitwan District. The farm survey from head, middle and tail regions of both schemes revealed that unequal water distribution exists in these regions in both schemes with greater percentage of farmers experiencing this situation in agency managed scheme. In both schemes, the cost recovery rate was very low, even below five percent in Lift System indicating poor operation and maintenance of the schemes. Also, the institution on practice in both schemes is unable to create any incentives for farmers’ willingness to pay as well as for its economical use in the farm. Thus, outcomes from the study showed that only the management transfer programs may not achieve the goal of efficient irrigation resource management. This may suggest water professionals to rethink about the irrigation policies for refining institutional framework irrespective of the governance of schemes for improved cost recovery and better water distribution throughout the irrigation schemes.Keywords: cost recovery, governance, institution, irrigation management transfer, willingness to pay
Procedia PDF Downloads 2931089 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1441088 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4671087 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 4451086 Artificial Intelligence: Mathway and Its Features
Authors: Aroob Binhimd, Lyan Sayoti, Rana Almansour
Abstract:
In recent years, artificial intelligence has grown drastically. This has led to the growth of educational programs to help students in solving educational problems and assist them in understanding certain topics. The purpose of this report is to investigate the Mathway application. Mathway is a mathematics software that teaches students how to solve and handle mathematical issues. The app allows students to insert questions manually on the platform or take a picture of the question, and then they get an answer to this mathematical question. It helps students enhance their performance in mathematics. This app can also be used to verify or check if their answers are correct. The report will include a questionnaire to collect data and analyze the users of this application.Keywords: artificial intelligence, Mathway, mathematics, mathematical problems
Procedia PDF Downloads 2631085 The Impact of Corporate Governance on Risk Taking in European Insurance Industry
Authors: Francesco Venuti, Simona Alfiero
Abstract:
The aim of this paper is to develop an empirical research on the nature and consequences of corporate governance on Eurozone Insurance Industry risk taking attitude. More particularly, we analyzed the effect of public ownership on risk taking with respect to privately held Insurance Companies. We also analyzed the effects on risk taking attitude of different degrees of ownership concentration, directors compensation, and the dimension/diversity of the Board of Directors. Our results provide quite strong evidence that, coherently with the Agency Theory, publicly traded insurance companies with more concentrated ownership are less risky than the corresponding privately held.Keywords: agency theory, corporate governance, insurance companies, risk taking
Procedia PDF Downloads 4281084 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network
Authors: R. Boudjelthia
Abstract:
The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete
Procedia PDF Downloads 3781083 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 5051082 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1711081 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.Keywords: landslide, limit analysis, artificial neural network, soil properties
Procedia PDF Downloads 2071080 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5241079 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 4121078 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3951077 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 4051076 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3861075 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 401074 Recent Developments in Artificial Intelligence and Information Communications Technology
Authors: Dolapo Adeyemo
Abstract:
Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.Keywords: ICT, IOT, accessibility solutions, universal design
Procedia PDF Downloads 871073 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4881072 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 726