Search results for: absorbed dose to patient (ADP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4584

Search results for: absorbed dose to patient (ADP)

4554 Assessment of Dose: Area Product of Common Radiographic Examinations in Selected Southern Nigerian Hospitals

Authors: Lateef Bamidele

Abstract:

Over the years, radiographic examinations are the most used diagnostic tools in the Nigerian health care system, but most diagnostic examinations carried out do not have records of patient doses. Lack of adequate information on patient doses has been a major hindrance in quantifying the radiological risk associated with radiographic examinations. This study aimed at estimating dose–area product (DAP) of patient examined in X-Ray units in selected hospitals in Southern Nigeria. The standard projections selected are chest posterior-anterior (PA), abdomen anterior-posterior (AP), pelvis AP, pelvis lateral (LAT), skull AP/PA, skull LAT, lumbar spine AP, lumbar spine, LAT. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDs were converted into DAP using the beam area of patients. The results show that the mean DAP ranged from 0.17 to 18.35 Gycm². The results obtained in this study when compared with those of NRPB-HPE were found to be higher. These are an indication of non optimization of operational conditions.

Keywords: dose–area product, radiographic examinations, patient doses, optimization

Procedia PDF Downloads 171
4553 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 414
4552 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method

Authors: Marzieh Jafarzadeh, Fatemeh Rezaee

Abstract:

Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.

Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow

Procedia PDF Downloads 207
4551 Analysis of Radiation-Induced Liver Disease (RILD) and Evaluation of Relationship between Therapeutic Activity and Liver Clearance Rate with Tc-99m-Mebrofenin in Yttrium-90 Microspheres Treatment

Authors: H. Tanyildizi, M. Abuqebitah, I. Cavdar, M. Demir, L. Kabasakal

Abstract:

Aim: Whole liver radiation has the modest benefit in the treatment of unresectable hepatic metastases but the radiation doses must keep in control. Otherwise, RILD complications may arise. In this study, we aimed to calculate amount of maximum permissible activity (MPA) and critical organ absorbed doses with MIRD methodology, to evaluate tumour doses for treatment response and whole liver doses for RILD and to find optimal liver function test additionally. Materials and Methods: This study includes 29 patients who attended our nuclear medicine department suffering from Y-90 microspheres treatment. 10 mCi Tc-99m MAA was applied to the patients for dosimetry via IV. After the injection, whole body SPECT/CT images were taken in one hour. The minimum therapeutic tumour dose is on the point of being 120 Gy1, the amount of activities were calculated with MIRD methodology considering volumetric tumour/liver rate. A sub-working group was created with 11 patients randomly and liver clearance rate with Tc-99m-Mebrofenin was calculated according to Ekman formalism. Results: The volumetric tumour/liver rates were found between 33-66% (Maksimum Tolarable Dose (MTD) 48-52Gy3) for 4 patients, were found less than 33% (MTD 72Gy3) for 25 patients. According to these results the average amount of activity, mean liver dose and mean tumour dose were found 1793.9±1.46 MBq, 32.86±0.19 Gy, and 138.26±0.40 Gy. RILD was not observed in any patient. In sub-working group, the relationship between Bilirubin, Albumin, INR (which show presence of liver disease and its degree), liver clearance with Tc-99m-Mebrofenin and calculated activity amounts were found r=0.49, r=0.27, r=0.43, r=0.57, respectively. Discussions: The minimum tumour dose was found 120 Gy for positive dose-response relation. If volumetric tumour/liver rate was > 66%, dose 30 Gy; if volumetric tumour/liver rate 33-66%, dose escalation 48 Gy; if volumetric tumour/liver rate < 33%, dose 72 Gy. These dose limitations did not create RILD. Clearance measurement with Mebrofenin was concluded that the best method to determine the liver function. Therefore, liver clearance rate with Tc-99m-Mebrofenin should be considered in calculation of yttrium-90 microspheres dosimetry.

Keywords: clearance, dosimetry, liver, RILD

Procedia PDF Downloads 431
4550 Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria

Authors: Idris Garba, Aisha Rabiu Abdullahi, Mansur Yahuza, Akintade Dare

Abstract:

Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography.

Keywords: CT urography, cancer risks, effective dose, radiation exposure

Procedia PDF Downloads 336
4549 Reduction of Patient’s Dose of I-131 Therapy by Used Local Diuretic Juice

Authors: Mosab kh. A. A. Bashir, E. Mohamed-Ahmed

Abstract:

The aim of the study is to compare the results of the external exposure and the range of the dose spread by the patients, hospitalized in two different groups of 3-5 d receiving radioiodine therapy because of thyroid cancer, and one of group were giving the local diuretic plant (barley) as local juice. The control group was 28 patients they were isolated as international precautions after taken I-131 capsule 100 mCi, and their external exposure was recorded day by day after first 24 hrs. and the distance for external measurement was 1 m at the abdominal level. The mean of external exposure values of patients at fourth day were 30.24±12.92 µSv h−1. The second group after taking I-131 capsule 100 mCi we were given barley juice (250 mL) after every meal three times on day and their external exposure was recorded day by day after first 24 hrs. The mean of external exposure values of patients of this group at third day was 26.92±9.89 (14-55) µSv h−1. It was observed that the external exposure from the second group clearly decreased to low levels which contributed to the decrease in patient dose and also to the decrease in the exposure from the patient to his/her family.

Keywords: local diuretic juice, therapy, radiation medicine, diuretic plant

Procedia PDF Downloads 309
4548 Viability of EBT3 Film in Small Dimensions to Be Use for in-Vivo Dosimetry in Radiation Therapy

Authors: Abdul Qadir Jangda, Khadija Mariam, Usman Ahmed, Sharib Ahmed

Abstract:

The Gafchromic EBT3 film has the characteristic of high spatial resolution, weak energy dependence and near tissue equivalence which makes them viable to be used for in-vivo dosimetry in External Beam and Brachytherapy applications. The aim of this study is to assess the smallest film dimension that may be feasible for the use in in-vivo dosimetry. To evaluate the viability, the film sizes from 3 x 3 mm to 20 x 20 mm were calibrated with 6 MV Photon and 6 MeV electron beams. The Gafchromic EBT3 (Lot no. A05151201, Make: ISP) film was cut into five different sizes in order to establish the relationship between absorbed dose vs. film dimensions. The film dimension were 3 x 3, 5 x 5, 10 x 10, 15 x 15, and 20 x 20 mm. The films were irradiated on Varian Clinac® 2100C linear accelerator for dose range from 0 to 1000 cGy using PTW solid water phantom. The irradiation was performed as per clinical absolute dose rate calibratin setup, i.e. 100 cm SAD, 5.0 cm depth and field size of 10x10 cm2 and 100 cm SSD, 1.4 cm depth and 15x15 cm2 applicator for photon and electron respectively. The irradiated films were scanned with the landscape orientation and a post development time of 48 hours (minimum). Film scanning accomplished using Epson Expression 10000 XL Flatbed Scanner and quantitative analysis carried out with ImageJ freeware software. Results show that the dose variation with different film dimension ranging from 3 x 3 mm to 20 x 20 mm is very minimal with a maximum standard deviation of 0.0058 in Optical Density for a dose level of 3000 cGy and the the standard deviation increases with the increase in dose level. So the precaution must be taken while using the small dimension films for higher doses. Analysis shows that there is insignificant variation in the absorbed dose with a change in film dimension of EBT3 film. Study concludes that the film dimension upto 3 x 3 mm can safely be used up to a dose level of 3000 cGy without the need of recalibration for particular dimension in use for dosimetric application. However, for higher dose levels, one may need to calibrate the films for a particular dimension in use for higher accuracy. It was also noticed that the crystalline structure of the film got damage at the edges while cutting the film, which can contribute to the wrong dose if the region of interest includes the damage area of the film

Keywords: external beam radiotherapy, film calibration, film dosimetery, in-vivo dosimetery

Procedia PDF Downloads 487
4547 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose

Procedia PDF Downloads 234
4546 Measurement of 238U, 232Th and 40K in Soil Samples Collected from Coal City Dhanbad, India

Authors: Zubair Ahmad

Abstract:

Specific activities of the natural radionuclides 238U, 232Th and 40K were measured by using γ - ray spectrometric technique in soil samples collected from the city of Dhanbad, which is located near coal mines. Mean activity values for 238U, 232Th and 40K were found to be 60.29 Bq/kg, 64.50 Bq/kg and 481.0 Bq/kg, respectively. Mean radium equivalent activity, absorbed dose rate, outdoor dose, external hazard index, internal hazard index, for the area under study were determined as 189.53 Bq/kg, 87.21 nGy/h, 0.37 mSv/y, 0.52 and 0.64, respectively. The annual effective dose to the general public was found 0.44 mSv/y. This value lies well below the limit of 1 mSv/y as recommended by International Commission on Radiological Protection. Measured values were found safe for environment and public health.

Keywords: coal city Dhanbad, gamma-ray spectroscopy, natural radioactivity, soil samples

Procedia PDF Downloads 263
4545 The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy

Authors: Alireza Shayegan, Morteza Amirabadi

Abstract:

The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps.

Keywords: energetic electron, gamma function, penumbra, Matlab software

Procedia PDF Downloads 292
4544 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.

Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method

Procedia PDF Downloads 398
4543 Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre

Authors: G. E. Okungbowa, H. O. Adams, S. E. Eze

Abstract:

This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students.

Keywords: x-ray, dose, examination, chest

Procedia PDF Downloads 179
4542 Difference between 'HDR Ir-192 and Co-60 Sources' for High Dose Rate Brachytherapy Machine

Authors: Md Serajul Islam

Abstract:

High Dose Rate (HDR) Brachytherapy is used for cancer patients. In our country’s prospect, we are using only cervices and breast cancer treatment by using HDR. The air kerma rate in air at a reference distance of less than a meter from the source is the recommended quantity for the specification of gamma ray source Ir-192 in brachytherapy. The absorbed dose for the patients is directly proportional to the air kerma rate. Therefore the air kerma rate should be determined before the first use of the source on patients by qualified medical physicist who is independent from the source manufacturer. The air kerma rate will then be applied in the calculation of the dose delivered to patients in their planning systems. In practice, high dose rate (HDR) Ir-192 afterloader machines are mostly used in brachytherapy treatment. Currently, HDR-Co-60 increasingly comes into operation too. The essential advantage of the use of Co-60 sources is its longer half-life compared to Ir-192. The use of HDRCo-60 afterloading machines is also quite interesting for developing countries. This work describes the dosimetry at HDR afterloading machines according to the protocols IAEA-TECDOC-1274 (2002) with the nuclides Ir-192 and Co-60. We have used 3 different measurement methods (with a ring chamber, with a solid phantom and in free air and with a well chamber) in dependence of each of the protocols. We have shown that the standard deviations of the measured air kerma rate for the Co-60 source are generally larger than those of the Ir-192 source. The measurements with the well chamber had the lowest deviation from the certificate value. In all protocols and methods, the deviations stood for both nuclides by a maximum of about 1% for Ir-192 and 2.5% for Co-60-Sources respectively.

Keywords: Ir-192 source, cancer, patients, cheap treatment cost

Procedia PDF Downloads 231
4541 Factors Associated with Ketamine Use in Pancreatic Cancer Patient in a Single Hospice Center

Authors: Kyung Min Kwom, Young Joo Lee

Abstract:

Purpose: Up to 90% of pancreatic cancer patient suffer from neuropathic pain. In palliative care setting, pain control in a pancreatic cancer patient is one of the major goals. Ketamine is a NMDA receptor antagonist effective in neuropathic pain. Also, there have been studies about opioid sparing effect of ketamine. This study was held in palliative care unit among pancreatic cancer patients to find out the factors related to ketamine use and the opioid sparing effect. Methods: Medical records of pancreatic cancer patients admitted to St. Mary’s hospital palliative care unit from 2013.1 to 2014.12 were reviewed. Patients were divided into two categories according to ketamine use. Also, opioid use before and after ketamine use was compared in ketamine group. Results: Compared to non ketamine use group, patients in ketamine group required a higher dose of opioid. Total opioid dose, daily opioid dose, number of daily rescue medication, daily average rescue dose were statistically significantly higher in ketamine group. Opioid requirement was increased after ketamine administration. Conclusion: In this study, ketamine group required more opioid. Ketamine is frequently considered in patients with severe pain, requiring high amount of opioid. Also, ketamine did not have an opioid sparing effect. Future studies about palliative use of ketamine in a larger number of patients are required.

Keywords: ketamine, opioid sparing, palliative care, pancreatic cancer

Procedia PDF Downloads 228
4540 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient

Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp

Abstract:

The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.

Keywords: equation, Graves’disease, prediction, 24-hour uptake

Procedia PDF Downloads 135
4539 Reduction of Physician's Radiation Dose during Cardiac Catheterization Procedures Using Lead-Free Sterile Radiation Shields

Authors: Mohammad O. Diab, Sahera A. Saleh, Mustapha M. Dichari, Nijez Aloulou, Omar Hamoui, Feras Chehade

Abstract:

This study sought to evaluate the efficiency of lead-free sterile radiation shield (Radionex) in the reduction of physician's exposure dose during interventional cardiology procedures. Cardiac catheterization procedures are often associated with high radiation doses and high levels of secondary radiation emitted by the patient's body. This study compares physician exposure dose rate during cardiac catheterization procedures done through the femoral artery with sterile radiation shielding to same procedures made without the shielding. The mean operator radiation dose rate without using the shield was found to be 18.4µSv/min compared to a mean dose rate of 5.1 µSv/min when using the shield, rendering a reduction of 72.5% of radiation received by the physician. Sterile radiation shielding is consequently an effective addition to a cardiac catheterization lab radiation protection system.

Keywords: cardiac catheterization, physician exposure dose, sterile radiation shielding, lead-free sterile radiation shields

Procedia PDF Downloads 504
4538 PET/CT Patient Dosage Assay

Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk

Abstract:

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses

Procedia PDF Downloads 513
4537 Comparison of Computed Tomography Dose Index, Dose Length Product and Effective Dose Among Male and Female Patients From Contrast Enhanced Computed Tomography Pancreatitis Protocol

Authors: Babina Aryal

Abstract:

Background: The diagnosis of pancreatitis is generally based on clinical and laboratory findings; however, Computed Tomography (CT) is an imaging technique of choice specially Contrast Enhanced Computed Tomography (CECT) shows morphological characteristic findings that allow for establishing the diagnosis of pancreatitis and determining the extent of disease severity which is done along with the administration of appropriate contrast medium. The purpose of this study was to compare Computed Tomography Dose Index (CTDI), Dose Length Product (DLP) and Effective Dose (ED) among male and female patients from Contrast Enhanced Computed Tomography (CECT) Pancreatitis Protocol. Methods: This retrospective study involved data collection based on clinical/laboratory/ultrasonography diagnosis of Pancreatitis and has undergone CECT Abdomen pancreatitis protocol. data collection involved detailed information about a patient's Age and Gender, Clinical history, Individual Computed Tomography Dose Index and Dose Length Product and effective dose. Results: We have retrospectively collected dose data from 150 among which 127 were males and 23 were females. The values obtained from the display of the CT screen were measured, calculated and compared to determine whether the CTDI, DLP and ED values were similar or not. CTDI for females was more as compared to males. The differences in CTDI values for females and males were 32.2087 and 37.1609 respectively. DLP values and Effective dose for both the genders did not show significant differences. Conclusion: This study concluded that there were no more significant changes in the DLP and ED values among both the genders however we noticed that female patients had more CTDI than males.

Keywords: computed tomography, contrast enhanced computed tomography, computed tomography dose index, dose length product, effective dose

Procedia PDF Downloads 107
4536 Cardiac Pacemaker in a Patient Undergoing Breast Radiotherapy-Multidisciplinary Approach

Authors: B. Petrović, M. Petrović, L. Rutonjski, I. Djan, V. Ivanović

Abstract:

Objective: Cardiac pacemakers are very sensitive to radiotherapy treatment from two sources: electromagnetic influence from the medical linear accelerator producing ionizing radiation- influencing electronics within the pacemaker, and the absorption of dose to the device. On the other hand, patients with cardiac pacemakers at the place of a tumor are rather rare, and single clinic hardly has experience with the management of such patients. The widely accepted international guidelines for management of radiation oncology patients recommend that these patients should be closely monitored and examined before, during and after radiotherapy treatment by cardiologist, and their device and condition followed up. The number of patients having both cancer and pacemaker, is growing every year, as both cancer incidence, as well as cardiac diseases incidence, are inevitably growing figures. Materials and methods: Female patient, age 69, was diagnozed with valvular cardiomyopathy and got implanted a pacemaker in 2005 and prosthetic mitral valve in 1993 (cancer was diagnosed in 2012). She was stable cardiologically and came to radiation therapy department with the diagnosis of right breast cancer, with the tumor in upper lateral quadrant of the right breast. Since she had all lymph nodes positive (28 in total), she had to have irradiated the supraclavicular region, as well as the breast with the tumor bed. She previously received chemotherapy, approved by the cardiologist. The patient was estimated to be with the high risk as device was within the field of irradiation, and the patient had high dependence on her pacemaker. The radiation therapy plan was conducted as 3D conformal therapy. The delineated target was breast with supraclavicular region, where the pacemaker was actually placed, with the addition of a pacemaker as organ at risk, to estimate the dose to the device and its components as recommended, and the breast. The targets received both 50 Gy in 25 fractions (where 20% of a pacemaker received 50 Gy, and 60% of a device received 40 Gy). The electrode to the heart received between 1 Gy and 50 Gy. Verification of dose planned and delivered was performed. Results: Evaluation of the patient status according to the guidelines and especially evaluation of all associated risks to the patient during treatment was done. Patient was irradiated by prescribed dose and followed up for the whole year, with no symptoms of failure of the pacemaker device during, or after treatment in follow up period. The functionality of a device was estimated to be unchanged, according to the parameters (electrode impedance and battery energy). Conclusion: Patient was closely monitored according to published guidelines during irradiation and afterwards. Pacemaker irradiated with the full dose did not show any signs of failure despite recommendations data, but in correlation with other published data.

Keywords: cardiac pacemaker, breast cancer, radiotherapy treatment planning, complications of treatment

Procedia PDF Downloads 432
4535 Research Progress on Patient Perception Assessment Tools for Patient Safety

Authors: Yirui Wang

Abstract:

In the past few decades, patient safety has been the focus of much attention in the global medical and health field. As medical standards continue to improve and develop, the demand for patient safety is also growing. As one of the important dimensions in assessing patient safety, the Patient Perception Patient Safety Assessment Tool provides unique and valuable information from the patient's own perspective and plays an important role in promoting patient safety. This article aims to summarize and analyze the assessment content, assessment methods and applications of currently commonly used patient-perceived patient safety assessment tools at home and abroad, with a view to providing a reference for medical staff to select appropriate patient-perceived patient safety assessment tools.

Keywords: patients, patient safety, perception, assessment tools, review

Procedia PDF Downloads 81
4534 Current Status of Ir-192 Brachytherapy in Bangladesh

Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar

Abstract:

Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.

Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas

Procedia PDF Downloads 425
4533 A Study of The Factors Predicting Radiation Exposure to Contacts of Saudi Patients Treated With Low-Dose Radioactive Iodine (I-131)

Authors: Khalid A. Salman, Shereen Wagih, Tariq Munshi, Musaed Almalki, Safwan Zatari, Zahid Khan

Abstract:

Aim: To measure exposure levels to family members and caregivers of Saudi patients treated with low dose I131 therapy, and household radiation exposure rate to predict different factors that can affect radiation exposure. Patients and methods: All adult self dependent patients with hyperthyroidism or cancer thyroid referred for low dose radioactive I131 therapy on outpatient basis are included. Radiation protection procedures are given to the participant and family members in details. TLD’s were dispensed to each participant in sufficient quantity for his/her family members living in the household. TLD’s are collected at fifth days post-dispense from patients who agreed to have a home visit during which the household is inspected and level of radiation contamination of surfaces was measured. Results: Thirty-two patients were enrolled in the current study, with a mean age of 43.1± 17.1 years Out of them 25 patients (78%) are females. I131 therapy was given in twenty patients (63%) for cancer thyroid of and for toxic goiter in the remaining twelve patients (37%), with an overall mean I131 dose of 24.1 ± 7.5mCi that is relatively higher in the former. The overall number of household family members and helpers of patients are 139, out of them77 are females (55.4%) & 62 are males (44.6%) with a mean age of 29.8± 17.6. The mean period of contact with the patient is 7.6 ±5.6hours. The cumulative radiation exposure shows that radiation exposure to all family members is below the exposure constraint (1mSv), with a range of 109 to 503uSv, and a mean value of 220.9±91 uSv. Numerical data shows a little higher exposure rate for family members of those who receive higher dose of I131 (patients with thyroid cancer) and household members who spent longer time with the patient, yet, the difference is statistically insignificant (P>0.05). Besides, no significant correlation was found between the degree of cumulative exposure of the family members to their gender, age, socioeconomic standard, educational level and residential factors. In the 21 home visits all data from bedrooms, reception areas and kitchens are below hazardous limits (0.5uSv/h) apart from bathrooms that give a slightly higher reading of 0.57±0.39 uSv/h in those with cancer thyroid who receive a higher radiation dose. A statistically significant difference was found between radiation exposure rate in bathrooms used by the patient versus those used by family members only, with a mean value of exposure rate of 0.701±0.21 uSv/h and 0.17±0.82 uSv/h respectively, with a p-value of 0.018 (<0.05). Conclusion: Family members of patients treated with low dose I131 on outpatient basis have a good compliance to radiation protection instruction if given properly with a cumulative radiation exposure rate evidently beyond the radiation exposure constraints of 1 mSv. Given I131 dose, hours spent with the patient, age, gender, socioeconomic standard, educational level and residential factors have no significant correlation with the cumulative radiation exposure. The patient bathroom exhibits more radiation exposure rate, needing more strict instructions for patient bathroom use and health hygiene.

Keywords: family members, radiation exposure, radioactive iodine therapy, radiation safety

Procedia PDF Downloads 270
4532 Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey

Authors: A. Karadeniz, Belgin Kucukomeroglu

Abstract:

In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0.

Keywords: concentration, radioactivity, Giresun, natural gamma radioactivity

Procedia PDF Downloads 386
4531 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 133
4530 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India

Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad

Abstract:

In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.

Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy

Procedia PDF Downloads 355
4529 Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)

Authors: Mehdi Benlarbi, Dalila Oulhaci

Abstract:

Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization.

Keywords: resources, water, arid, evaporation, infiltration

Procedia PDF Downloads 72
4528 Dosimetric Application of α-Al2O3:C for Food Irradiation Using TA-OSL

Authors: A. Soni, D. R. Mishra, D. K. Koul

Abstract:

α-Al2O3:C has been reported to have deeper traps at 600°C and 900°C respectively. These traps have been reported to accessed at relatively earlier temperatures (122 and 322 °C respectively) using thermally assisted OSL (TA-OSL). In this work, the dose response α-Al2O3:C was studied in the dose range of 10Gy to 10kGy for its application in food irradiation in low ( upto 1kGy) and medium(1 to 10kGy) dose range. The TOL (Thermo-optically stimulated luminescence) measurements were carried out on RisØ TL/OSL, TL-DA-15 system having a blue light-emitting diodes (λ=470 ±30nm) stimulation source with power level set at the 90% of the maximum stimulation intensity for the blue LEDs (40 mW/cm2). The observations were carried on commercial α-Al2O3:C phosphor. The TOL experiments were carried out with number of active channel (300) and inactive channel (1). Using these settings, the sample is subjected to linear thermal heating and constant optical stimulation. The detection filter used in all observations was a Hoya U-340 (Ip ~ 340 nm, FWHM ~ 80 nm). Irradiation of the samples was carried out using a 90Sr/90Y β-source housed in the system. A heating rate of 2 °C/s was preferred in TL measurements so as to reduce the temperature lag between the heater plate and the samples. To study the dose response of deep traps of α-Al2O3:C, samples were irradiated with various dose ranging from 10 Gy to 10 kGy. For each set of dose, three samples were irradiated. In order to record the TA-OSL, initially TL was recorded up to a temperature of 400°C, to deplete the signal due to 185°C main dosimetry TL peak in α-Al2O3:C, which is also associated with the basic OSL traps. After taking TL readout, the sample was subsequently subjected to TOL measurement. As a result, two well-defined TA-OSL peaks at 121°C and at 232°C occur in time as well as temperature domain which are different from the main dosimetric TL peak which occurs at ~ 185°C. The linearity of the integrated TOL signal has been measured as a function of absorbed dose and found to be linear upto 10kGy. Thus, it can be used for low and intermediate dose range of for its application in food irradiation. The deep energy level defects of α-Al2O3:C phosphor can be accessed using TOL section of RisØ reader system.

Keywords: α-Al2O3:C, deep traps, food irradiation, TA-OSL

Procedia PDF Downloads 293
4527 Accuracy of Computed Tomography Dose Monitor Values: A Multicentric Study in India

Authors: Adhimoolam Saravana Kumar, K. N. Govindarajan, B. Devanand, R. Rajakumar

Abstract:

The quality of Computed Tomography (CT) procedures has improved in recent years due to technological developments and increased diagnostic ability of CT scanners. Due to the fact that CT doses are the peak among diagnostic radiology practices, it is of great significance to be aware of patient’s CT radiation dose whenever a CT examination is preferred. CT radiation dose delivered to patients in the form of volume CT dose index (CTDIvol) values, is displayed on scanner monitors at the end of each examination and it is an important fact to assure that this information is accurate. The objective of this study was to estimate the CTDIvol values for great number of patients during the most frequent CT examinations, to study the comparison between CT dose monitor values and measured ones, as well as to highlight the fluctuation of CTDIvol values for the same CT examination at different centres and scanner models. The output CT dose indices measurements were carried out on single and multislice scanners for available kV, 5 mm slice thickness, 100 mA and FOV combination used. The 100 CT scanners were involved in this study. Data with regard to 15,000 examinations in patients, who underwent routine head, chest and abdomen CT were collected using a questionnaire sent to a large number of hospitals. Out of the 15,000 examinations, 5000 were head CT examinations, 5000 were chest CT examinations and 5000 were abdominal CT examinations. Comprehensive quality assurance (QA) was performed for all the machines involved in this work. Followed by QA, CT phantom dose measurements were carried out in South India using actual scanning parameters used clinically by the hospitals. From this study, we have measured the mean divergence between the measured and displayed CTDIvol values were 5.2, 8.4, and -5.7 for selected head, chest and abdomen procedures for protocols as mentioned above, respectively. Thus, this investigation revealed an observable change in CT practices, with a much wider range of studies being performed currently in South India. This reflects the improved capacity of CT scanners to scan longer scan lengths and at finer resolutions as permitted by helical and multislice technology. Also, some of the CT scanners have used smaller slice thickness for routine CT procedures to achieve better resolution and image quality. It leads to an increase in the patient radiation dose as well as the measured CTDIv, so it is suggested that such CT scanners should select appropriate slice thickness and scanning parameters in order to reduce the patient dose. If these routine scan parameters for head, chest and abdomen procedures are optimized than the dose indices would be optimal and lead to the lowering of the CT doses. In South Indian region all the CT machines were routinely tested for QA once in a year as per AERB requirements.

Keywords: CT dose index, weighted CTDI, volumetric CTDI, radiation dose

Procedia PDF Downloads 252
4526 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 149
4525 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 184