Search results for: Recycling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 602

Search results for: Recycling

572 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 157
571 Efficient Depolymerization of Polyethylene terephthalate (PET) Using Bimetallic Catalysts

Authors: Akmuhammet Karayev, Hassam Mazhar, Mamdouh Al Harthi

Abstract:

Polyethylene terephthalate (PET) recycling stands as a pivotal solution in combating plastic pollution and fostering a circular economy. This study addresses the catalytic glycolysis of PET, a key step in its recycling process, using synthesized catalysts. Our focus lies in elucidating the catalytic mechanism, optimizing reaction kinetics, and enhancing reactor design for efficient PET conversion. We synthesized anionic clays tailored for PET glycolysis and comprehensively characterized them using XRD, FT-IR, BET, DSC, and TGA techniques, confirming their suitability as catalysts. Through systematic parametric studies, we optimized reaction conditions to achieve complete PET conversion to bis hydroxy ethylene terephthalate (BHET) with over 75% yield within 2 hours at 200°C, employing a minimal catalyst concentration of 0.5%. These results underscore the catalysts' exceptional efficiency and sustainability, positioning them as frontrunners in catalyzing PET recycling processes. Furthermore, we demonstrated the recyclability of the obtained BHETs by repolymerizing them back to PET without the need for a catalyst. Heating the BHETs in a distillation unit facilitated their conversion back to PET, highlighting the closed-loop potential of our recycling approach. Our work embodies a significant leap in catalytic glycolysis kinetics, driven by sustainable catalysts, offering rapid and high-impact PET conversion while minimizing environmental footprint. This breakthrough not only sets new benchmarks for efficiency in PET recycling but also exemplifies the pivotal role of catalysis and reaction engineering in advancing sustainable materials management.

Keywords: polymer recycling, catalysis, circular economy, glycolysis

Procedia PDF Downloads 41
570 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow

Authors: Shan Zhang, Peter Suechting

Abstract:

Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.

Keywords: environmental economics, machine learning, recycling, international trade

Procedia PDF Downloads 168
569 The Review and Contribution of Taiwan Government Policies on Environmental Impact Assessment to Water Recycling

Authors: Feng-Ming Fan, Xiu-Hui Wen, Po-Feng Chen, Yi-Ching Tu

Abstract:

Because of inborn natural conditions and man-made sabotage, the water resources insufficient phenomenon in Taiwan is a very important issue needed to face immediately. The regulations and law of water resources protection and recycling are gradually completed now but still lack of specific water recycling effectiveness checking method. The research focused on the industrial parks that already had been certificated with EIA to establish a professional checking system, carry through and forge ahead to contribute one’s bit in water resources sustainable usage. Taiwan Government Policies of Environmental Impact Assessment established in 1994, some development projects were requested to set certain water recycling ratio for water resources effective usage. The water covers and contains everything because all-inclusive companies enter and be stationed. For control the execution status of industrial park water and waste water recycling ratio about EIA commitment effectively, we invited experts and scholars in this filed to discuss with related organs to formulate the policy and audit plan. Besides, call a meeting to set public version water equilibrium diagrams and recycles parameter. We selected nine industrial parks that were requested set certain water recycling ratio in EIA examination stage and then according to the water usage quantity, we audited 340 factories in these industrial parks with spot and documents examination and got fruitful results – the average water usage of unit area per year of all these examined industrial parks is 31,000 tons/hectare/year, the value is just half of Taiwan industries average. It is obvious that the industrial parks with EIA commitment can decrease the water resources consumption effectively. Taiwan government policies of Environmental Impact Assessment took follow though tracking function into consideration at the beginning. The results of this research verify the importance of the implementing with water recycling to save water resources in EIA commitment. Inducing development units to follow EIA commitment to get the balance between environmental protection and economic development is one of the important EIA value.

Keywords: Taiwan government policies of environmental impact assessment, water recycling ratio of EIA commitment, water resources sustainable usage, water recycling

Procedia PDF Downloads 226
568 Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels

Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova

Abstract:

The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.

Keywords: fillers, industrial floors, recycling, secondary raw material, solar panel

Procedia PDF Downloads 287
567 Recyclable Household Solid Waste Generation and Collection in Beijing, China

Authors: Tingting Liu, Yufeng Wu, Xi Tian, Yu Gong, Tieyong Zuo

Abstract:

The household solid waste generated by household in Beijing is increasing quickly due to rapid population growth and lifestyle changes. However, there are no rigorous data on the generation and collection of the recyclable household solid wastes. The Beijing city government needs this information to make appropriate policies and plans for waste management. To address this information need, we undertook the first comprehensive study of recyclable household solid waste for Beijing. We carried out a survey of 500 families across sixteen districts in Beijing. We also analyzed the quantities, spatial distribution and categories of collected waste handled by curbside recyclers and permanent recycling centers for 340 of the 9797 city-defined residential areas of Beijing. From our results, we estimate that the total quantity of recyclable household solid waste was 1.8 million tonnes generated by Beijing household in 2013 and 71.6% of that was collected. The main generation categories were waste paper (24.4%), waste glass bottle (23.7%) and waste furniture (14.3%). The recycling rate was varied among different kinds of municipal solid waste. Also based on our study, we estimate there were 22.8 thousand curbside recyclers and 5.7 thousand permanent recycling centers in Beijing. The problems of household solid waste collecting system were inadequacies of authorized collection centers, skewed ratios of curbside recyclers and authorized permanent recycling centers, weak recycling awareness of residents and lack of recycling resources statistics and appraisal system. According to the existing problems, we put forward the suggestions to improve household solid waste management.

Keywords: Municipal waste; Recyclable waste; Waste categories; Waste collection

Procedia PDF Downloads 296
566 Facilitating Waste Management to Achieve Sustainable Residential Built Environments

Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy

Abstract:

The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.

Keywords: recycling, residential buildings, sustainability, waste

Procedia PDF Downloads 327
565 Impact of Life Cycle Assessment for Municipal Plastic Waste Treatment in South Africa

Authors: O. A. Olagunju, S. L. Kiambi

Abstract:

Municipal Plastic Wastes (MPW) can have several negative effects on the environment, and this is causing a growing concern which requires urgent intervention. Addressing these environmental challenges by proffering alternative end-of-life (EOL) techniques for MPW treatment is thus critical for designing and implementing effective long-term remedies. In this study, the environmental implications of several MPW treatment technologies were assessed using life cycle assessment (LCA). Our focus was on four potential waste treatment scenarios for MPW: waste disposal via landfill, waste incineration, waste regeneration, and reusability of recycled waste. The findings show that recycling has a greater benefit over landfilling and incineration methods. The most important environmental benefit comes from the recycling of plastics, which may serve as reliable source materials for environmentally friendly products. Following a holistic evaluation, five major factors that influence the overall impact on the environment were outlined: the mass fraction in waste, the recycling rate, the conversion efficiency, the waste-to-energy conversion rate, and the type of energy which can be utilized from incineration generated energy

Keywords: end-of-life, incineration, landfill, life cycle assessment, municipal plastic waste, recycling, waste-to-energy

Procedia PDF Downloads 81
564 Polymer Recycling by Biomaterial and Its Application in Grease Formulation

Authors: Amitkumar Barot, Vijaykumar Sinha

Abstract:

There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources.

Keywords: castor oil, grease formulation, recycling, sustainability

Procedia PDF Downloads 219
563 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 102
562 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 552
561 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process

Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun

Abstract:

This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional

Keywords: manure composting, odor removal, parameter control, waste recycling

Procedia PDF Downloads 310
560 Review on Future Economic Potential Stems from Global Electronic Waste Generation and Sustainable Recycling Practices.

Authors: Shamim Ahsan

Abstract:

Abstract Global digital advances associated with consumer’s strong inclination for the state of art digital technologies is causing overwhelming social and environmental challenges for global community. During recent years not only economic advances of electronic industries has taken place at steadfast rate, also the generation of e-waste outshined the growth of any other types of wastes. The estimated global e-waste volume is expected to reach 65.4 million tons annually by 2017. Formal recycling practices in developed countries are stemming economic liability, opening paths for illegal trafficking to developing countries. Informal crude management of large volume of e-waste is transforming into an emergent environmental and health challenge in. Contrariwise, in several studies formal and informal recycling of e-waste has also exhibited potentials for economic returns both in developed and developing countries. Some research on China illustrated that from large volume of e-wastes generation there are recycling potential in evolving from ∼16 (10−22) billion US$ in 2010, to an anticipated ∼73.4 (44.5−103.4) billion US$ by 2030. While in another study, researcher found from an economic analysis of 14 common categories of waste electric and electronic equipment (WEEE) the overall worth is calculated as €2.15 billion to European markets, with a potential rise to €3.67 billion as volumes increase. These economic returns and environmental protection approaches are feasible only when sustainable policy options are embraced with stricter regulatory mechanism. This study will critically review current researches to stipulate how global e-waste generation and sustainable e-waste recycling practices demonstrate future economic development potential in terms of both quantity and processing capacity, also triggering complex some environmental challenges.

Keywords: E-Waste, , Generation, , Economic Potential, Recycling

Procedia PDF Downloads 305
559 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 238
558 Pruning Residue Effects on Symbiotic N₂ Fixation and δ¹³C Isotopic Composition of Sesbania sesban and Cajanus cajan

Authors: I. T. Makhubedu, B. A. Letty, P. F. Scogings, P. L. Mafongoya

Abstract:

Despite their potential importance in recycling dinitrogen (N2) fixed in alley cropping systems, the effects of tree pruning residues on symbiotic N2 fixation are poorly studied. A 2 x 2 x 2 factorial experiment was conducted to evaluate the effects of pruning residue management and pruning date on symbiotic performance and

Keywords: alley cropping, management, N₂ fixed, natural abundance, recycling

Procedia PDF Downloads 213
557 Study of the Effect of Sewing on Non Woven Textile Waste at Dry and Composite Scales

Authors: Wafa Baccouch, Adel Ghith, Xavier Legrand, Faten Fayala

Abstract:

Textile waste recycling has become a necessity considering the augmentation of the amount of waste generated each year and the ecological problems that landfilling and burning can cause. Textile waste can be recycled into many different forms according to its composition and its final utilization. Using this waste as reinforcement to composite panels is a new recycling area that is being studied. Compared to virgin fabrics, recycled ones present the disadvantage of having lower structural characteristics, when they are eco-friendly and with low cost. The objective of this work is transforming textile waste into composite material with good characteristic and low price. In this study, we used sewing as a method to improve the characteristics of the recycled textile waste in order to use it as reinforcement to composite material. Textile non-woven waste was afforded by a local textile recycling industry. Performances tests were evaluated using tensile testing machine and based on the testing direction for both reinforcements and composite panels; machine and transverse direction. Tensile tests were conducted on sewed and non sewed fabrics, and then they were used as reinforcements to composite panels via epoxy resin infusion method. Rule of mixtures is used to predict composite characteristics and then compared to experimental ones.

Keywords: composite material, epoxy resin, non woven waste, recycling, sewing, textile

Procedia PDF Downloads 586
556 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
555 Recycling of Tea: A Prepared Lithium Anode Material Research

Authors: Yea-Chyi Lin, Shinn-Dar Wu, Chien-Ping Chung

Abstract:

Tea is not only part of the daily lives of the Chinese people, but also represents an essence of their culture. A manufactured tea is prepared with other complicated steps for self-cultivation. Tea drinking promotes friendship and is etiquette in Chinese ceremony. Tea was discovered in China and introduced worldwide. Tea is generally used as herbal medicine. Paowan of tea can be used as plant composts and deodorant as well as for moisture proof-package. Tea prepared via carbon material technology resulted in the increase of its value. Carbon material technology uses graphite. With the battery anode material, tea can also become a new carbon material element. It has a fiber carbon structure that can retain the advantage of tea ontology. Therefore, this study provides a new preparation method through special sintering technology equipment with a gas counter-current system of 300°C to 400°C and 400°C to 900°C. The recovery of carbonization was up to 80% or more. This study addresses tea recycling technology and shows charred sintering method and loss from solving grinder to obtain a good fiber carbon structure.

Keywords: recycling technology, tea, carbonization, sintering technology, manufacturing

Procedia PDF Downloads 431
554 Recycling of End of Life Concrete Based on C2CA Method

Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja

Abstract:

One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.

Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability

Procedia PDF Downloads 391
553 The Cultural Significance of Recycling - A Native American Perspective

Authors: Martin A. Curry

Abstract:

Madeline Island is a small island community in Wisconsin, USA. Located in Lake Superior, it has been home to the Anishinaabe/Ojibway people for 1000s of years and is known as Moningwankuaning Minis-"The Island of the Golden Breasted Woodpecker". The community relies on summer tourism as its source of income, with a small population of 400 year-round residents. Supervisor Martin A. Curry (Ojibway/German descent) has been working on a fiscally responsible, environmentally principled and culturally centered approach to waste diversion and recycling. The tenets of this program encompass plastics, paper, food waste, local farming, energy production and art education. Through creative writing for the local newspaper and creative interactions, Martin has worked to engage the community in a more robust interest in waste diversion, including setting up a free-will donation store that incorporates elder volunteering opportunities, a compost program that works with the local community garden, biodiesel production and an art program that works with children from the local island school to make paper, grow local food and paint murals. The entirety of this program is based on the Ojibway concept of Mino-Bimadiiziwiin- "The Good Life" and benefits the community and its guests and represents a microcosm of the global dilemmas of waste and recycling.

Keywords: recycling, waste diversion, island, Native American, art

Procedia PDF Downloads 116
552 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic Interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf, Meriem Boutamine, Hachemi Hichem, Zoubir Benmaamar, Didier Villemin

Abstract:

This study explores the use of intelligent textiles for electromagnetic shielding through the continuous dyeing of graphene and polyaniline onto cotton fabric. Graphene was obtained by recycling graphite from spent batteries, and polyaniline was obtained in situ using H2O2. Graphene and polyaniline were bottom-modified on the fiber surface to improve adhesion and achieve a uniform distribution. This study evaluated the effect of the specific gravity percentage on sheet performance and active shielding against electromagnetic interference (EMI). Results showed that the dyed fabrics of graphene, polyaniline, and graphene/polyaniline demonstrated higher conductivity and EMI SE values of 9 to 16 dB in the 8 to 9 GHz range of the X-band, with potential applications in electromagnetic shielding. The use of intelligent textiles offers a sustainable and effective approach to achieving EMI shielding, with the added benefits of recycling waste materials and improving the properties of cotton fabrics.

Keywords: 'ntelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling.

Procedia PDF Downloads 38
551 Polyethylene Terephthalate (PET) Fabrics Decoloring for PET Textile Recycle

Authors: Chung-Yang Chuang, Hui-Min Wang, Min-Yan Dong, Chang-Jung Chang

Abstract:

PET fiber is the most widely used fiber worldwide. This man-made fiber is prepared from petroleum chemicals, which may cause environmental pollution and resource exhausting issues, such as the use of non-renewable sources, greenhouse gas emission and discharge of wastewater. Therefore, the textile made by recycle-PET is the trend in the future. Recycle-PET fiber, compared with petroleum-made PET, shows lower carbon emissions and resource exhaustion. However, “fabric decoloring” is the key barrier to textile recycling. The dyes existing in the fabrics may cause PET chain degradation and appearance drawbacks during the textile recycling process. In this research, the water-based decoloring agent was used to remove the dispersed dye in the PET fabrics in order to obtain the colorless PET fabrics after the decoloring process. The decoloring rate of PET fabrics after the decoloring process was up to 99.0%. This research provides a better solution to resolve the issues of appearance and physical properties degradation of fabrics-recycle PET materials due to the residual dye. It may be possible to convert waste PET textiles into new high-quality PET fiber and build up the loop of PET textile recycling.

Keywords: PET, decoloring, disperse dye, textile recycle

Procedia PDF Downloads 140
550 An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling

Authors: J. Uka, B. McKay, T. Minton, O. Adole, R. Lewis, S. J. Glanvill, L. Anguilano

Abstract:

Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling.

Keywords: reuse, recycle, aluminium, swarf, oxide layers

Procedia PDF Downloads 133
549 Moving Towards Zero Waste in a UK Local Authority Area: Challenges to the Introduction of Separate Food Waste Collections

Authors: C. Cole, M. Osmani, A. Wheatley, M. Quddus

Abstract:

EU and UK Government targets for minimising and recycling household waste has led the responsible authorities to research the alternatives to landfill. In the work reported here the local waste collection authority (Charnwood Borough Council) has adopted the aspirational strategy of becoming a “Zero Waste Borough” to lead the drive for public participation. The work concludes that the separate collection of food waste would be needed to meet the two regulatory standards on recycling and biologically active wastes. An analysis of a neighbouring Authority (Newcastle-Under-Lyne Borough Council (NBC), a similar sized local authority that has a successful weekly food waste collection service was undertaken. Results indicate that the main challenges for Charnwood Borough Council would be gaining householder co-operation, the extra costs of collection and organising alternative treatment. The analysis also demonstrated that there was potential offset value via anaerobic digestion for CBC to overcome these difficulties and improve its recycling performance.

Keywords: England, food waste collections, household waste, local authority

Procedia PDF Downloads 414
548 A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants

Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu

Abstract:

The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.

Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy

Procedia PDF Downloads 42
547 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method

Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini

Abstract:

The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.

Keywords: ABS, process optimization, Taguchi, mechanical properties

Procedia PDF Downloads 73
546 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 83
545 Solid Waste Characterization and Recycling Potential in Hawassa University, Ethiopia

Authors: Hunachew Beyene Mengesha, Biruck Desalegn Yirsaw

Abstract:

Owing to the dramatic expansion of universities in Ethiopia, understanding the composition and nature of solid waste at the source of generation plays an important role in designing a program for an integrated waste management program. In this study, we report the quantity, quality and recycling potential of the waste generated in the three campuses of the Hawassa University, Southern Ethiopia. A total of 3.5 tons of waste was generated per day in the three campuses of the university. More than 95% of the waste constituents were with potential to be recovered. It was a lesson from the study that there was no source reduction, recycling, composting, proper land filling or incineration practices in-place. The considerably high waste generation associated with the expansion of educational programs in the university appears worthwhile requiring implementation of programs for an integrated solid waste management to minimize health risk to humans and reduce environmental implications as a result of improper handling and disposal of wastes.

Keywords: Hawassa University, integrated solid waste management, solid waste generation, energy management, waste management

Procedia PDF Downloads 320
544 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 173
543 Agricultural Solid Wastes Generation in Nigeria and Their Recycling Potentials into Building Materials

Authors: Usman Aliyu Jalam, Shuaibu Alolo Sumaila, Sa’adiya Iliyasu Muhammed

Abstract:

Modern building industry lays much emphasis on sophisticated materials that have high embodied energy with intrinsic distinctiveness for damaging the environment. But today, advances in solid waste management have resulted in alternative building materials as partial or complete replacement of the conventional materials like cement, aggregate etc particularly for low cost housing. Investigations carried out revealed that an estimated 18.0 million tonnes of agricultural solid wastes are being generated in Nigeria annually. This constitutes a problem not only to the natural environment but also to the built environment more particularly with the way the wastes are being dispose of. The paper has discussed the present status on the generation and utilisation of agricultural solid wastes, their recycling potentials and environmental implications. It further discovered that although considerable quantity of these wastes were found to have the potentials of being recycled as building materials, the availability of the appropriate technology remains a big challenge in the country. Moreover, majority of the wastes type have gained popularity as fuel. As such, the economic and environmental benefits of recycling the wastes and the use of the wastes as fuel need further investigation.

Keywords: agricultural waste, building, environment, materials, Nigeria

Procedia PDF Downloads 400