Search results for: Lévy Model
16788 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 19116787 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 55316786 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 20816785 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal
Procedia PDF Downloads 32116784 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility
Authors: Le Kang
Abstract:
According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.Keywords: USR, achievement model, ferris wheel model, social responsibilities
Procedia PDF Downloads 72516783 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 59516782 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 11216781 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model
Authors: S. A. Sadegh Zadeh, C. Kambhampati
Abstract:
Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential
Procedia PDF Downloads 61716780 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain
Authors: Muleya Nqobile, Winston Garira
Abstract:
We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model
Procedia PDF Downloads 45916779 Proposal for a Generic Context Meta-Model
Authors: Jaouadi Imen, Ben Djemaa Raoudha, Ben Abdallah Hanene
Abstract:
The access to relevant information that is adapted to users’ needs, preferences and environment is a challenge in many applications running. That causes an appearance of context-aware systems. To facilitate the development of this class of applications, it is necessary that these applications share a common context meta-model. In this article, we will present our context meta-model that is defined using the OMG Meta Object facility (MOF). This meta-model is based on the analysis and synthesis of context concepts proposed in literature.Keywords: context, meta-model, MOF, awareness system
Procedia PDF Downloads 56016778 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors
Procedia PDF Downloads 55016777 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 40716776 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 24316775 OmniDrive Model of a Holonomic Mobile Robot
Authors: Hussein Altartouri
Abstract:
In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot
Procedia PDF Downloads 60816774 A Constitutive Model for Time-Dependent Behavior of Clay
Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili
Abstract:
A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.Keywords: bounding surface, consistency theory, constitutive model, viscosity
Procedia PDF Downloads 49216773 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 40916772 Numerical Modeling of the Depth-Averaged Flow over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.Keywords: depth-averaged equations, numerical modeling, CFD, wind park model
Procedia PDF Downloads 60316771 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 17316770 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 37816769 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.Keywords: stock market prediction, social moods, regression model, DJIA
Procedia PDF Downloads 54816768 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 4016767 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 25716766 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 38416765 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56316764 Towards a Measurement-Based E-Government Portals Maturity Model
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.Keywords: best practices, e-government portal, maturity model, quality model
Procedia PDF Downloads 33816763 A Unique Professional Development of Teacher Educators: Teaching Colleagues
Authors: Naomi Weiner-Levy
Abstract:
The Mofet Institute of Research, established a School of Professional Development, the only one of its kind in Israel and throughout the world. It offers specialized programs for teacher educators, providing them with the professional knowledge and skills. The studies aim at updating teachers about rapidly changing knowledge and skills. Teacher educators are conceptualized as shifting from first order practitioners (school teachers) to second order practitioners. Those who train teachers are referred to as third order practitioners. The instructors in the School of Professional Development are third-order practitioners – teacher educators specializing in teaching their colleagues. Collegial guidance by teachers’ college staff members is no simple task: Tutors must be expert in their field of specialization, as well as in instruction. Moreover, although colleagues, they have to position themselves within the group as authoritative figures in terms of instruction and knowledge. To date, the role and professional identity of these third-order practitioners, has not been studied. To understand the nature and development of professional identity, a qualitative study was conducted in which 12 tutors of various subjects were interviewed. These were analyzed by categorical content analysis. The findings, assessed professional identity through a post-modern prism, while examining the interplay among events that tutors experienced, the knowledge they acquired and the structuring of their professional identity. The Tutors’ identity transformed through negotiating with ‘self’ and ‘other’ in the class, and constructed by their mutual experiences as tutors and learners. Understanding the function and identity of tutors facilitates comprehension of this unique training process for teacher educators.Keywords: professional development, professional identity, teacher education, tutoring
Procedia PDF Downloads 22316762 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration
Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos
Abstract:
In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.Keywords: CFD, deflagration, hydrogen, combustion model
Procedia PDF Downloads 50216761 A Framework for Consumer Selection on Travel Destinations
Authors: J. Rhodes, V. Cheng, P. Lok
Abstract:
The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust
Procedia PDF Downloads 45816760 A Combined AHP-GP Model for Selecting Knowledge Management Tool
Authors: Ahmad Sarfaraz, Raiyad Herwies
Abstract:
In this paper, a multi-criteria decision making analysis is used to help any organization selects the best KM tool that fits and serves its needs. The AHP model is used based on a previous study to highlight and identify the main criteria and sub-criteria that are incorporated in the selection process. Different KM tools alternatives with different criteria are compared and weighted accurately to be incorporated in the GP model. The main goal is to combine the GP model with the AHP model to ensure that selecting the KM tool considers the resource constraints. Two important issues are discussed in this paper: how different factors could be taken into consideration in forming the AHP model, and how to incorporate the AHP results into the GP model for better results.Keywords: knowledge management, analytical hierarchy process, goal programming, multi-criteria decision making
Procedia PDF Downloads 38516759 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 261