Search results for: David Matthews
710 Islamic State: Franchising Jihad through the New Caliphate
Authors: Janiel David Melamed Visbal
Abstract:
The Islamic State has become one of the most remarkable threats for international security through their religious extremism and their establishment of a new caliphate by force. The main objective of this organization is to obtain territorial expansions beyond the Middle East and eventually to consolidate an Islamic global order based on their extremist ideology. This paper will conduct an analysis regarding how, over the past year, many jihadist organizations worldwide have pledged their alliagance to the Islamic State, transforming it into the most important jihadist franchise globally.Keywords: Islamic state, franchise, jihad, Islamic fundamentalism, caliphate
Procedia PDF Downloads 359709 Comparative Analysis of the Performance Between Public and Private Companies: Explanatory Factors
Authors: Atziri Moreno Vite, David Silva Gutiérrez
Abstract:
Oil companies have become the key player in the world energy scenario thanks to their strong control of the level of hydrocarbon reserves and production. The present research aims to identify the main factors that explain the results of these companies through an in-depth review of the specialized literature and to analyze the results of these companies by means of econometric analysis with techniques such as Data Envelopment Analysis (DEA). The results show the relevance and impact of factors such as the level of employment or investment of the company.Keywords: oil companies, performance, determinants, productive
Procedia PDF Downloads 126708 Cost and Benefits of Collocation in the Use of Biogas to Reduce Vulnerabilities and Risks
Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik
Abstract:
The urgency of the climate crisis requires both innovation and practicality. The energy transition framework allows industry to deliver resilient cities, enhance adaptability to change, pursue energy objectives such as growth or efficiencies, and increase renewable energy. This paper investigates a real-world application perspective for the use of biogas in Brazil and the U.S.. It will examine interventions to provide a foundation of infrastructure, as well as the tangible benefits for policy-makers crafting law and providing incentives.Keywords: resilience, vulnerability, risks, biogas, sustainability.
Procedia PDF Downloads 105707 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 168706 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 160705 The Storm in Us All: An Etymological Study of Tempest
Authors: David N. Prihoda
Abstract:
This paper charts the history of the English word Tempest from its origins in Proto-Indo European to its modern usage as a term for storms, both literal and metaphorical. It does so by way of considering the word’s morphology, semiotics, and phonetics. It references numerous language studies and dictionaries to chronicle the word’s many steps along that path, from demarcation of measurement to assessment of time, all the way to an observation about the weather or the human psyche. The conclusive findings show that tempest has undergone numerous changes throughout its history, and these changes interestingly parallel its connotations as a symbol for both chaotic weather and the chaos of the human spiritKeywords: Tempest, etymology, language origins, English
Procedia PDF Downloads 114704 Internet of Things Applications on Supply Chain Management
Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca
Abstract:
The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management
Procedia PDF Downloads 425703 Simulating the Interaction of Strategy Development and Project Delivery
Authors: Nipun Agarwal, David Paul, Fareed Un Din
Abstract:
Every organization develops a strategy that needs to be implemented and is undertaken through project delivery. In essence, project requirements should exactly replicate an organization’s strategy. In reality this does not happen, and behavioral factors deviate the project delivery from the strategic objectives. This occurs as project stakeholders can have competing objectives. Resultantly, requirements that are implemented through projects are less aligned to the strategy. This paper develops a game theoretic model to simulate why such deviations occur. That explains the difference between strategy development and implementation.Keywords: strategy, simulation, project management, game theory
Procedia PDF Downloads 138702 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition
Authors: Ammar Edress Mohamed, Mustafa Aziz, David Wright
Abstract:
This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.Keywords: magnetic recording, finite elements, asymmetrical magnetic heads, superposition, Laplace's equation
Procedia PDF Downloads 393701 Electrodermal Activity Measurement Using Constant Current AC Source
Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán
Abstract:
This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance
Procedia PDF Downloads 108700 Increasing Student Engagement in Online Educational Leadership Courses
Authors: Mark Deschaine, David Whale
Abstract:
Utilization of online instruction continues to increase at universities, placing more emphasis on the exploration of issues related to adult graduate student engagement. This reflective case study reviews non-traditional student engagement in online courses. The goals of the study are to enhance student focus, attention and interaction. Findings suggest that interactivity seemed to be a key in keeping students involved and achieving, with specific activities routinely favored by students. It is recommended that time spent engaging students is worthwhile and results in greater course satisfaction and academic effort.Keywords: online learning, student achievement, student engagement, technology
Procedia PDF Downloads 354699 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon
Procedia PDF Downloads 580698 Using Technology to Enhance the Student Assessment Experience
Authors: Asim Qayyum, David Smith
Abstract:
The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.Keywords: information tools, assessment, online learning, student assessment experience
Procedia PDF Downloads 560697 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: Manana Chumburidze, David Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution
Procedia PDF Downloads 507696 Diversity of Bird Species and Conservation of Two Lacustrine Wetlands of the Upper Benue Basin, Adamawa, Nigeria
Authors: D. l. David, J. A. Wahedi, U. Buba, R. Zakariya
Abstract:
Between January, 2004 to December, 2005, studies were carried out on the bird species diversity and relative abundance of two lakes, Kiri and Gyawana near Numan using the “Timed Species Count (TSC)” method. 163 species in 53 bird families and 160 species in 55 bird families were recorded at Kiri and Gyawana lakes respectively. There was no significant difference in species diversity within bird families between the two lakes (p > 0.05), whereas in Gyawana Lake, one of the sites qualified as Ramsar site, none strongly qualified as an Important Bird Area (IBA). The significance of these findingsare also discussed.Keywords: conservation, diversity, lacustrine, wetlands
Procedia PDF Downloads 682695 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem
Authors: Dávid Csercsik, Péter Kádár
Abstract:
In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.Keywords: optimization, MATLAB, quadratic programming, economic dispatch
Procedia PDF Downloads 549694 Catalytic Combustion of Methane over Co/Mo and Co/Mn Catalysts at Low Temperature
Authors: Ahmed I. Osman, Jehad K. Abu-Dahrieh, Jillian M. Thompson, David W. Rooney
Abstract:
Natural gas (the main constituent is Methane 95%) is considered as an alternative to petroleum for the production of synthetics fuels. Nowadays, methane combustion at low temperature has received much attention however; it is the most difficult hydrocarbon to be combusted. Co/Mo and (4:1 wt/wt) catalysts were prepared from a range of different precursors and used for the low temperature total methane oxidation (TMO). The catalysts were characterized by, XRD, BET and H2-TPR and tested under reaction temperatures of 250-400 °C with a GHSV= 36,000 mL g-1 h-1. It was found that the combustion temperature was dependent on the type of the precursor, and that those containing chloride led to catalysts with lower activity. The optimum catalyst was Co/Mo (4:1wt/wt) where greater than 20% methane conversion was observed at 250 °C. This catalyst showed a high degree of stability for TMO, showing no deactivation during 50 hours of time on stream.Keywords: methane low temperature total oxidation, oxygen carrier, Co/Mo, Co/Mn
Procedia PDF Downloads 544693 Fuzzy Logic in Detecting Children with Behavioral Disorders
Authors: David G. Maxinez, Andrés Ferreyra Ramírez, Liliana Castillo Sánchez, Nancy Adán Mendoza, Carlos Aviles Cruz
Abstract:
This research describes the use of fuzzy logic in detection, assessment, analysis and evaluation of children with behavioral disorders. It shows how to acquire and analyze ambiguous, vague and full of uncertainty data coming from the input variables to get an accurate assessment result for each of the typologies presented by children with behavior problems. Behavior disorders analyzed in this paper are: hyperactivity (H), attention deficit with hyperactivity (DAH), conduct disorder (TD) and attention deficit (AD).Keywords: alteration, behavior, centroid, detection, disorders, economic, fuzzy logic, hyperactivity, impulsivity, social
Procedia PDF Downloads 565692 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 450691 Comparative Investigation of Miniaturized Antennas Based on Chiral Slotted Ground Plane
Authors: Oussema Tabbabi, Mondher Laabidi, Fethi Choubani, J. David
Abstract:
This study presents a miniaturized antenna based on chiral metamaterials slotted ground plane. To decrease resonant frequency while keeping the antennas physical dimensions the same, we propose a two novel patch antennas with double Z and cross slots on the ground plane. The length of the each type of slot are also altered to investigate the effect on miniaturization performance. Resonance frequency reduction has been achieved nearly to 30% and 23% as well as size reduction of almost 28% and 22% for the double Z and the cross shape respectively.Keywords: chiral metamaterials, miniaturized antenna, miniaturization, resonance frequency
Procedia PDF Downloads 457690 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller
Authors: K. Boumediene, S. E. Belhenniche
Abstract:
This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance
Procedia PDF Downloads 500689 The Effect of Emotional Stimuli Related to Body Imbalance in Postural Control and the Phenomenological Experience of Young Healthy Adults
Authors: David Martinez-Pernia, Alvaro Rivera-Rei, Alejandro Troncoso, Gonzalo Forno, Andrea Slachevsky, David Huepe, Victoria Silva-Mack, Jorge Calderon, Mayte Vergara, Valentina Carrera
Abstract:
Background: Recent theories in the field of emotions have taken the relevance of motor control beyond a system related to personal autonomy (walking, running, grooming), and integrate it into the emotional dimension. However, to our best knowledge, there are no studies that specifically investigate how emotional stimuli related to motor control modify emotional states in terms of postural control and phenomenological experience. Objective: The main aim of this work is to investigate the emotions produced by stimuli of bodily imbalance (neutral, pleasant and unpleasant) in the postural control and the phenomenological experience of young, healthy adults. Methodology: 46 healthy young people are shown emotional videos (neutral, pleasant, motor unpleasant, and non-motor unpleasant) related to the body imbalance. During the period of stimulation of each of the videos (60 seconds) the participant is standing on a force platform to collect temporal and spatial data of postural control. In addition, the electrophysiological activity of the heart and electrodermal activity is recorded. In relation to the two unpleasant conditions (motor versus non-motor), a phenomenological interview is carried out to collect the subjective experience of emotion and body perception. Results: Pleasant and unpleasant emotional videos have significant changes with respect to the neutral condition in terms of greater area, higher mean velocity, and greater mean frequency power on the anterior-posterior axis. The results obtained with respect to the electrodermal response was that the pleasurable and unpleasant conditions produced a significant increase in the phasic component with respect to the neutral condition. Regarding the electrophysiology of the heart, no significant change was found in any condition. Phenomenological experiences in the two unpleasant conditions differ in body perception and the emotional meaning of the experience. Conclusion: Emotional stimuli related to bodily imbalance produce changes in postural control, electrodermal activity, and phenomenological experience. This experimental setting could be relevant to be implemented in people with motor disorders (Parkinson, Stroke, TBI) to know how emotions affect motor control.Keywords: body imbalance stimuli, emotion, phenomenological experience, postural control
Procedia PDF Downloads 175688 Increased Circularity in Metals Production Using the Ausmelt TSL Process
Authors: Jacob Wood, David Wilson, Stephen Hughes
Abstract:
The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.Keywords: ausmelt TSL, smelting, circular economy, energy efficiency
Procedia PDF Downloads 245687 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning
Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour
Abstract:
In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty
Procedia PDF Downloads 562686 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics
Authors: David Nagy
Abstract:
This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415
Procedia PDF Downloads 388685 A Professional Learning Model for Schools Based on School-University Research Partnering That Is Underpinned and Structured by a Micro-Credentialing Regime
Authors: David Lynch, Jake Madden
Abstract:
There exists a body of literature that reports on the many benefits of partnerships between universities and schools, especially in terms of teaching improvement and school reform. This is because such partnerships can build significant teaching capital, by deepening and expanding the skillsets and mindsets needed to create the connections that support ongoing and embedded teacher professional development and career goals. At the same time, this literature is critical of such initiatives when the partnership outcomes are short- term or one-sided, misaligned to fundamental problems, and not expressly focused on building the desired teaching capabilities. In response to this situation, research conducted by Professor David Lynch and his TeachLab research team, has begun to shed light on the strengths and limitations of school/university partnerships, via the identification of key conceptual elements that appear to act as critical partnership success factors. These elements are theorised as an inter-play between professional knowledge acquisition, readiness, talent management and organisational structure. However, knowledge of how these elements are established, and how they manifest within the school and its teaching workforce as an overall system, remains incomplete. Therefore, research designed to more clearly delineate these elements in relation to their impact on school/university partnerships is thus required. It is within this context that this paper reports on the development and testing of a Professional Learning (PL) model for schools and their teachers that incorporates school-university research partnering within a systematic, whole-of-school PL strategy that is underpinned and structured by a micro-credentialing (MC) regime. MC involves learning a narrow-focused certificate (a micro-credential) in a specific topic area (e.g., 'How to Differentiate Instruction for English as a second language Students') and embedded in the teacher’s day-to-day teaching work. The use of MC is viewed as important to the efficacy and sustainability of teacher PL because it (1) provides an evidence-based framework for teacher learning, (2) has the ability to promote teacher social capital and (3) engender lifelong learning in keeping professional skills current in an embedded and seamless to work manner. The associated research is centred on a primary school in Australia (P-6) that acted as an arena to co-develop, test/investigate and report on outcomes for teacher PL that uses MC to support a whole-of-school partnership with a university.Keywords: teaching improvement, teacher professional learning, talent management, education partnerships, school-university research
Procedia PDF Downloads 81684 Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree
Authors: Mohamed Sahli, David Bassir, Thierry Barriere, Xavier Roizard
Abstract:
Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool.Keywords: titanium turning, cutting tools, FE simulation, chip
Procedia PDF Downloads 174683 Predictive Maintenance Based on Oil Analysis Applicable to Transportation Fleets
Authors: Israel Ibarra Solis, Juan Carlos Rodriguez Sierra, Ma. del Carmen Salazar Hernandez, Isis Rodriguez Sanchez, David Perez Guerrero
Abstract:
At the present paper we try to explain the analysis techniques use for the lubricating oil in a maintenance period of a city bus (Mercedes Benz Boxer 40), which is call ‘R-24 route’, line Coecillo Centro SA de CV in Leon Guanajuato, to estimate the optimal time for the oil change. Using devices such as the rotational viscometer and the atomic absorption spectrometer, they can detect the incipient form when the oil loses its lubricating properties and, therefore, cannot protect the mechanical components of diesel engines such these trucks. Timely detection of lost property in the oil, it allows us taking preventive plan maintenance for the fleet.Keywords: atomic absorption spectrometry, maintenance, predictive velocity rate, lubricating oils
Procedia PDF Downloads 570682 Assessment of Weaver Birds and Their Allies Within and Around Ngel-Nyaki Forest Reserve, Yelwa, Sardauna LGA, Taraba State, Nigeria
Authors: David Delpine Leila, Demnyo Sunita Femi, Musa David Garkida, Elisha Emmanuel Barde, Emmanuel Allahnanan, Yani Julius Philip
Abstract:
Birds are among the key components of the earth’s biodiversity and the most diverse and evolutionarily successful groups of animals. The weaverbirds are a large family of birds found mostly in Africa, with a few species found in southern Asia and the West Indian Ocean islands. This study assessed the diversity and abundance of weaver birds and their allies within and around Ngel-Nyaki Forest Reserve in Yelwa, Sardauna Local Government Area of Taraba State, Nigeria. A total of 602 weaver birds and allies’ bird species were recorded using the Point Count Line Transect. The data collected during the research period were analyzed using simple percentages, and diversity was calculated using the Shannon Wiener Diversity Index. The fenced (ungrazed area) was more abundant with 351 individuals while the unfenced (grazed area) was less abundant with 251 individuals recorded. In the fenced (ungrazed area), Yellow Bishop (Euplectes capensis) had the highest abundance of (102; 29.01%), followed by Village Weaver (Ploceus cucullatus) (80; 22.79%), then Vieillot's Black Weaver (Ploceus nigerrimus) (40; 11.42%), Red-collard Widowbird (Ploceus ardens) (6; 1.71%), Dark-backed Weaver (5; 1.42%) and the least was Hartlaub Marsh Widowbird (1; 0.28%) while in the unfenced (grazed area), the Village weaver (Ploceus cucullatus) (85; 33.86%) was the most abundant, followed by Spectacled Weaver (Ploceus ocularis) (36; 14.34%), then Yellow Bishop (Euplectes capensis) (30; 11.95%), Baglefecht Weaver (Ploceus baglafecht) (23; 9.16%), Bannerman’s Weaver (Ploceus bannermani) (17; 6.77%) and the least was Yellow-mantled Widowbird (Euplectes macroura) (5; 1.99%). In terms of diversity, there were more weaver bird species in the fenced area with a Shannon Wiener Diversity Index of (Hˈ 2.03417) than in the unfenced area with a Shannon Wiener Diversity Index of (Hˈ 1.862671). The Shannon Wiener Diversity Index in both fenced and unfenced areas is significant. There was more abundance of bird species in the fenced area than in the unfenced area of the Forest Reserve. Thorough research should be conducted on the abundance and diversity of weavers and their allies because we were only able to access 4 km2 out of 46 km2 of land available, according to the Annual Report of Ngel-Nyaki Forest Reserve of 2020. It shows that there are many species of weaver birds and their allies, such as the Black-billed Weaver (Ploceus melanogaster) and the Red-billed Quelea (Quelea quelea), which are available within the reserve.Keywords: abundance, diversity, weaver birds, allies, Ngel-Nyaki
Procedia PDF Downloads 72681 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 456