Search results for: Andrey Usanov
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 76

Search results for: Andrey Usanov

46 Polarization of Glass with Positive and Negative Charge Carriers

Authors: Valentina V. Zhurikhina, Mihail I. Petrov, Alexandra A. Rtischeva, Mark Dussauze, Thierry Cardinal, Andrey A. Lipovskii

Abstract:

Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy.

Keywords: glass poling, charge transport, modeling, concentration profiles

Procedia PDF Downloads 359
45 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 325
44 A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period.

Keywords: smart building envelope, thermal performance, phase change material, energy efficiency, large-scale sandwich panel

Procedia PDF Downloads 730
43 Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression

Authors: Ekaterina M. Myasnikova, Andrey A. Makashov, Alexander V. Spirov

Abstract:

First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions.

Keywords: drosophila, gap genes, reaction-diffusion model, robustness

Procedia PDF Downloads 366
42 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion

Authors: Andrey Khalov

Abstract:

The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.

Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER

Procedia PDF Downloads 15
41 An Investigation of Anticancer Fluorinated Aza-Heterocycles

Authors: Darya O. Prima, Elena V. Vorontsova, Yuri G. Slizhov, Andrey V. Zibarev

Abstract:

A broad family of carbocycle-fluorinated aza-heterocycles including 1,3-benzodiazoles (benzimidazoles), 1,2,3-benzotriazoles, 2,1,3-benzothia/selenadiazoles and 1,4-benzodiazines (quinoxalines) was synthesized in the unified way and assessed for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma, a kind of oral cancer) cells. The diazoles, triazoles and selenadiazoles revealed low medium inhibitory concentrations IC50 = 2.2-26.4 µМ and induced the cells’ apoptosis at low concentrations C = 1-25 µМ. For selenadiazoles, cell death dynamics was observed already in the first hours after the treatment. Replacement of one atom F by group Me2N in some cases enlarged apoptotic activity of the compounds towards the Hep2 cells. In contrast, the archetypal (i.e. non-fluorinated) 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole were low toxic (IC50 > 100 µM) and induced apoptosis only at high concentrations. The chlorinated congeners of the heterocycles under discussion were highly toxic towards the Hep2 cells but revealed insignificant ability to induce their apoptosis. Overall, the findings above suggest that fluorinated 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole derivatives can be considered as potential anticancer drugs. For the laryngeal epidermoid carcinoma (for which, according to available statistics, the five-year survival rate remained ~50% during the past 30 years), it is especially important since surgical treatment is seriously complicated here thus encouraging medicament one.

Keywords: Apoptosis, aza-heterocycles, cytotoxicity, fluorinated, Hep2 cells, synthesis

Procedia PDF Downloads 339
40 The Impact of Urethral Plate Width on Surgical Outcomes After Distal Hypospadias Repair in Children

Authors: Andrey Boyko

Abstract:

Nowadays, there is no consensus about the influence of urethral plate (UP) width on the surgical outcomes after distal hypospadias repair. The purpose of the research was to study the association between UP width and surgical outcomes after distal hypospadias repair in children. Materials and methods: The study included 138 patients with distal hypospadias. The mean age at the time of surgery was 4.6 years (6 months – 16 years). We measured UP width at the “midpoint within the glans” and used the HOSE scale to assess postoperative outcomes. The patients were divided into 2 groups: group 1 – the patients (107) with UP < 8mm, group 2 – patients (31) with UP > 8mm. All boys underwent TIP repair. Preincision means UP width after incision means UP width, and the UP ratio was analyzed. Statistical data were obtained using Statistica 10. Results: The findings were preincision mean UP width - 5.4 mm and 9.4 mm; after incision mean UP width - 13mm and 17.5 mm; UP ratio - 0.41 and 0.53 in group 1 and group 2, respectively. Most postoperative complications (fistula, meatal stenosis, and stricture) happened in patients with UP width < 8 mm versus ≥ 8 mm (7/107 versus 2/31, respectively). HOSE results were 15.77 (group 1), 15.65 (group 2). The follow up lasted up to 12 months. Statistical analysis proved the absence of correlation between UP width and postoperative complications. Conclusions: In conclusion, it should be noted that the success of surgical repair mostly depended on the surgical technique.

Keywords: children, distal hypospadias, tip repair, urethral plate width

Procedia PDF Downloads 123
39 Price Heterogeneity in Establishing Real Estate Composite Price Index as Underlying Asset for Property Derivatives in Russia

Authors: Andrey Matyukhin

Abstract:

Russian official statistics have been showing a steady decline in residential real estate prices for several consecutive years. Price risk in real estate markets is thus affecting various groups of economic agents, namely, individuals, construction companies and financial institutions. Potential use of property derivatives might help mitigate adverse consequences of negative price dynamics. Unless a sustainable price indicator is developed, settlement of such instruments imposes constraints on counterparties involved while imposing restrictions on real estate market development. The study addresses geographical and classification heterogeneity in real estate prices by means of variance analysis in various groups of real estate properties. In conclusion, we determine optimal sample structure of representative real estate assets with sufficient level of price homogeneity. The composite price indicator based on the sample would have a higher level of robustness and reliability and hence improving liquidity in the market for property derivatives through underlying standardization. Unlike the majority of existing real estate price indices, calculated on country-wide basis, the optimal indices for Russian market shall be constructed on the city-level.

Keywords: price homogeneity, property derivatives, real estate price index, real estate price risk

Procedia PDF Downloads 307
38 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 120
37 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
36 Structural, Magnetic and Thermodynamic Investigation of Iridium Double Perovskites with Ir⁵⁺

Authors: Mihai I. Sturza, Laura T. Corredor, Kaustuv Manna, Gizem A. Cansever, Tushar Dey, Andrey Maljuk, Olga Kataeva, Sabine Wurmehl, Anja Wolter, Bernd Buchner

Abstract:

Recently, the iridate double perovskite Sr₂YIrO₆ has attracted considerable attention due to the report of unexpected magnetism in this Ir⁵⁺ material, in which according to the Jeff model, a non-magnetic ground state is expected. Structural, magnetic and thermodynamic investigations of Sr₂YIrO₆ and Ba2YIrO6 single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat will be presented. The single crystals were grown by using SrCl₂ and BaCl₂ as flux. Single-crystal X-ray diffraction measurements performed on several crystals from different preparation batches showed a high quality of the crystals, proven by the good internal consistency of the data collected using the full-sphere mode and an extremely low R factor. In agreement with the expected non-magnetic ground state of Ir⁵⁺ (5d4) in these iridates, no magnetic transition is observed down to 430 mK. Moreover, our results suggest that the low-temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order of

Keywords: double perovskites, iridates, self-flux grown synthesis, spin-orbit coupling

Procedia PDF Downloads 330
35 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection

Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev

Abstract:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.

Keywords: Parkinson's disease, mutations, mitophagy, autophagy

Procedia PDF Downloads 197
34 High Responsivity of Zirconium boride/Chromium Alloy Heterostructure for Deep and Near UV Photodetector

Authors: Sanjida Akter, Ambali Alade Odebowale, Andrey E. Miroshnichenko, Haroldo T. Hattori

Abstract:

Photodetectors (PDs) play a pivotal role in optoelectronics and optical devices, serving as fundamental components that convert light signals into electrical signals. As the field progresses, the integration of advanced materials with unique optical properties has become a focal point, paving the way for the innovation of novel PDs. This study delves into the exploration of a cutting-edge photodetector designed for deep and near ultraviolet (UV) applications. The photodetector is constructed with a composite of Zirconium Boride (ZrB2) and Chromium (Cr) alloy, deposited onto a 6H nitrogen-doped silicon carbide substrate. The determination of the optimal alloy thickness is achieved through Finite-Difference Time-Domain (FDTD) simulation, and the synthesis of the alloy is accomplished using radio frequency (RF) sputtering. Remarkably, the resulting photodetector exhibits an exceptional responsivity of 3.5 A/W under an applied voltage of -2 V, at wavelengths of 405 nm and 280 nm. This heterostructure not only exemplifies high performance but also provides a versatile platform for the development of near UV photodetectors capable of operating effectively in challenging conditions, such as environments characterized by high power and elevated temperatures. This study contributes to the expanding landscape of photodetector technology, offering a promising avenue for the advancement of optoelectronic devices in demanding applications.

Keywords: responsivity, silicon carbide, ultraviolet photodetector, zirconium boride

Procedia PDF Downloads 66
33 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 94
32 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics

Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov

Abstract:

The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.

Keywords: cure point, initial permeability, integral defects level, homogeneity

Procedia PDF Downloads 134
31 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems

Procedia PDF Downloads 470
30 Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions

Authors: Xin Zhao. Xuerong Zheng. Andrey L. Rogach

Abstract:

Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates.

Keywords: dual-atom catalyst, single-atom catalyst, MXene substrates, water splitting

Procedia PDF Downloads 69
29 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 14
28 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 181
27 Ion Beam Polishing of Si in W/Si Multilayer X-Ray Analyzers

Authors: Roman Medvedev, Andrey Yakshin, Konstantin Nikolaev, Sergey Yakunin, Fred Bijkerk

Abstract:

Multilayer structures are used as spectroscopic elements in fluorescence analysis. These serve the purpose of analyzing soft x-ray emission spectra of materials upon excitation by x-rays or electrons. The analysis then allows quantitative determination of the x-ray emitting elements in the materials. Shorter wavelength range for this application, below 2.5nm, can be covered by using short period multilayers, with a period of 2.5 nm and lower. Thus the detrimental effect on the reflectivity of morphological roughness between materials of the multilayers becomes increasingly pronounced. Ion beam polishing was previously shown to be effective in reducing roughness in some multilayer systems with Si. In this work, we explored W/Si multilayers with the period of 2.5 nm. Si layers were polishing by Ar ions, employing low energy ions, 100 and 80 eV, with the etched Si thickness being in the range 0.1 to 0.5 nm. CuK X-ray diffuse scattering measurements revealed a significant reduction in the diffused scattering in the polished multilayers. However, Grazing Incidence CuK X-ray showed only a marginal reduction of the overall roughness of the systems. Still, measurements of the structures with Grazing Incidence Small Angle X-ray scattering indicated that the vertical correlation length of roughness was strongly reduced in the polished multilayers. These results together suggest that polishing results in the reduction of the vertical propagation of roughness from layer to layer, while only slightly affecting the overall roughness. This phenomenon can be explained by ion-induced surface roughening inherently present in the ion polishing methods. Alternatively, ion-induced densification of thin Si films should also be considered. Finally, the reflectivity of 40% at 0.84 nm at grazing incidence of 9 degrees has been obtained in this work for W/Si multilayers. Analysis of the obtained results is expected to lead to further progress in reflectance.

Keywords: interface roughness, ion polishing, multilayer structures, W/Si

Procedia PDF Downloads 134
26 Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes

Authors: Evgeny Pokushalov, Claire Garcia, Andrey Ponomarenko, John Smith, Michael Johnson, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Leila Kasimova, Richard Miller

Abstract:

This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management.

Keywords: Type 2 diabetes, AI-guided supplementation, personalized medicine, glycemic control, metabolic health, genetic polymorphisms, dietary supplements, HbA1c, fasting plasma glucose, HOMA-IR, personalized nutrition

Procedia PDF Downloads 9
25 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 442
24 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 316
23 The Efficacy of Box Lesion+ Procedure in Patients with Atrial Fibrillation: Two-Year Follow-up Results

Authors: Oleg Sapelnikov, Ruslan Latypov, Darina Ardus, Samvel Aivazian, Andrey Shiryaev, Renat Akchurin

Abstract:

OBJECTIVE: MAZE procedure is one of the most effective surgical methods in atrial fibrillation (AF) treatment. Nowadays we are all aware of its modifications. In our study we conducted clinical analysis of “Box lesion+” approach during MAZE procedure in two-year follow-up. METHODS: We studied the results of the open-heart on-pump procedures performed in our hospital from 2017 to 2018 years. Thirty-two (32) patients with atrial fibrillation (AF) were included in this study. Fifteen (15) patients had concomitant coronary bypass grafting and seventeen (17) patients had mitral valve repair. Mean age was 62.3±8.7 years; prevalence of men was admitted (56.1%). Mean duration of AF was 4.75±5.44 and 7.07±8.14 years. In all cases, we performed endocardial Cryo-MAZE procedure with one-time myocardium revascularization or mitral-valve surgery. All patients of this study underwent pulmonary vein (PV) isolation and ablation of mitral isthmus with additional isolation of LA posterior wall (Box-lesion+ procedure). Mean follow-up was 2 years. RESULTS: All cases were performed without any complications. Additional isolation of posterior wall did not prolong the operative time and artificial circulation significantly. Cryo-MAZE procedure directly lasted 20±2.1 min, the whole operation time was 192±24 min and artificial circulation time was 103±12 min. According to design of the study, we performed clinical investigation of the patients in 12 months and in 2 years from the initial procedure. In 12 months, the number of AF free patients 81.8% and 75.8% in two years of follow-up. CONCLUSIONS: Isolation of the left atrial posterior wall and perimitral area may considerably improve the efficacy of surgical treatment, which was demonstrated in significant decrease of AF recurrences during the whole period of follow-up.

Keywords: atrial fibrillation, cryoablation, left atrium isolation, open heart procedure

Procedia PDF Downloads 127
22 Analysis of Post-vaccination Immunity in Children with Severe Chronic Diseases Receiving Immunosuppressive Therapy by Specific IgG Antibodies Definition Method

Authors: Marina G. Galitskaya, Svetlana G. Makarova, Andrey P. Fisenko.

Abstract:

Children on medication-induced immunosuppression are at high risk of developing severe course infectious diseases. Therefore, preventive vaccination is especially important for these children. However, due to the immunosuppressive effects of treatment for the underlying disease, the effectiveness of vaccination may decrease below the protective level. In a multidisciplinary children's medical center, post-vaccination immunity was studied in 79 children aged 4-17 years. The children were divided into 2 groups: Group 1 (38 children) with kidney pathology (Nephrotic Syndrome) and Group 2 (41 children) with inflammatory bowel diseases (Ulcerative Colitis, Crohn's Disease). Both groups of children were vaccinated according to the national vaccination calendar and received immunosuppressive therapy (prednisolone, methotrexate, cyclosporine, and other drugs) for at least 1 year. Using the enzyme-linked immunosorbent assay method, specific IgG antibodies to vaccine-preventable infections were determined: measles, rubella, mumps, diphtheria, pertussis, tetanus, and hepatitis B. The study showed the percentage of children with positive IgG values for vaccine-preventable infections. The highest percentage of children had protective antibody levels to measles (84.2% in children with nephrotic syndrome and 92.6% in those with inflammatory bowel disease) and rubella (71% and 80.4%, respectively). The lowest percentage of children with protective antibodies was for hepatitis B (5.2% and 29.2% respectively). Antibodies to mumps, diphtheria, pertussis, and tetanus were found not in all children (from 39,4% to 82,9%). The remaining percentage of children did not have detectable IgG antibodies to vaccine-preventable infections. Not all children, despite the previous vaccination, preserved antibodies to vaccine-controlled infections and remained unprotected by specific IgG antibodies. The issue of a booster vaccine dose should be considered in children without contraindications to vaccination. Children receiving long-term immunosuppressive therapy require an individual vaccination approach, including a specific definition of the performed vaccination.

Keywords: immunosuppressive therapy, inflammatory bowel diseases, nephrotic syndrome, post-vaccination immunity, specific antibodies, vaccine-preventable infections.

Procedia PDF Downloads 33
21 Development of NO-Ergic Synaptic Transmission in Sympathetic Neurons of Mammals: Immunohistochemical Study

Authors: Konstantin Yu. Moiseev, Antonina F. Budnik, Andrey I. Emanuilov, Petr M. Masliukov

Abstract:

The vast majority of sympathetic ganglionic neurons are catecholaminergic. Some sympathetic neurons lack catecholamines and mostly use acetylcholine as their main neurotransmitter. Some cholinergic postganglionic neurons also express neuronal nitric oxide synthase (nNOS). Preganglionic sympathetic neurons are cholinergic and most of them are also nNOS-immunoreactive (IR). The purpose of this study was to gain further insight into the neuroplasticity of sympathetic neurons during postnatal ontogenesis by comparing the development of pre- and postganglionic neurons expressing nNOS in different mammals. nNOS was investigated by immunohistochemistry in the sympathetic superior cervical ganglion (SCG), stellate ganglion (SG), celiac ganglion (CG) and spinal cord from rats, mice and cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old and 2-year-old). In rats and mice, nNOS-positive neurons were not found in sympathetic ganglia from birth onwards. In cats, non-catecholaminergic nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56%. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing vasoactive intestinal peptide increased in the first 20 days of life. Choline acetyltransferase (ChAT)-IR and calcitonin gene-related peptide-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. In newborn mammals, the most of sympathetic preganglionic neurons in the nucleus intermediolateralis thoracolumbalis pars principalis (nucl.ILp) were nNOS-IR. The percentage of nNOS-IR neurons decreased and the same parameter of ChAT-IR neurons increased during the development. We conclude that the development of nNOS-IR preganglionic and ganglionic sympathetic neurons in different mammals has time and species differences.

Keywords: sympathetic neuron, nitric oxide synthase, immunohistochemistry, development

Procedia PDF Downloads 224
20 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 163
19 Transformation of Antitrust Policy against Collusion in Russia and Transition Economies

Authors: Andrey Makarov

Abstract:

This article will focus on the development of antitrust policy in transition economies in the context of preventing explicit and tacit collusion. Experience of BRICS, CIS (Ukraine, Kazakhstan) and CEE countries (Bulgaria, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia, Czech Republic, Estonia) in the creation of antitrust institutions was analyzed, including both legislation and enforcement practice. Most of these countries in the early 90th were forced to develop completely new legislation in the field of protection of competition and it is important to compare different ways of building antitrust institutions and policy results. The article proposes a special approach to evaluation of preventing collusion mechanisms. This approach takes into account such enforcement problems as: classification problems (tacit vs explicit collusion, vertical vs horizontal agreements), flexibility of prohibitions (the balance between “per se” vs “rule of reason” approaches de jure and in practice), design of sanctions, private enforcement challenge, leniency program mechanisms, the role of antitrust authorities etc. The analysis is conducted using both official data, published by competition authorities, and expert assessments. The paper will show how the integration process within the EU predetermined some aspects of the development of antitrust policy in CEE countries, including the trend of the use of "rule of reason" approach. Simultaneously was analyzed the experience of CEE countries in special mechanisms of government intervention. CIS countries in the development of antitrust policy followed more or less original ways, without such a great impact from the European Union, more attention will be given to Russian experience in this field, including the analysis of judicial decisions in antitrust cases. Main problems and challenges for transition economies in this field will be shown, including: Legal uncertainty problem; Problem of rigidity of prohibitions; Enforcement priorities of the regulator; Interaction of administrative and criminal law, limited effectiveness of criminal sanctions in the antitrust field; The effectiveness of leniency program design; Private enforcement challenge.

Keywords: collusion, antitrust policy, leniency program, transition economies, Russia, CEE

Procedia PDF Downloads 446
18 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 283
17 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep

Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths

Abstract:

In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.

Keywords: brain diseases, brain lymphatic system, phototherapy, sleep

Procedia PDF Downloads 72