Search results for: linear parameter varying systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15401

Search results for: linear parameter varying systems

9551 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 49
9550 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems

Authors: Jun Yuan

Abstract:

Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.

Keywords: shipping emission, electricity ship, charging station, optimal design

Procedia PDF Downloads 67
9549 Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection

Authors: P. N. Salini, B. Anish Kini, R. Ashalatha

Abstract:

At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections.

Keywords: signalized intersection, saturation flow, adjustment factors, capacity

Procedia PDF Downloads 131
9548 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran

Authors: Safieh Javadinejad

Abstract:

In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.

Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling

Procedia PDF Downloads 297
9547 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia PDF Downloads 164
9546 Are SMS Reminders an Precursor to Outpatient Show-Ups?

Authors: Shankar M. Bakkannavar, Smitha Nayak, Vinod C. Nayak, Ravi Bagali

Abstract:

Attendance rate for hospital outpatient appointments plays a pivotal role in operational efficiency of a hospital. Strategic interventions like ‘reminder systems’ prior to the scheduled appointment has proved to be an effective strategy for outpatient appointment ‘show-ups’. This study is designed with an objective to assess the effectiveness of SMS reminders as an intervention to enhance the effectiveness of hospital outpatient attendance. Method: The survey was conducted at Columbia Asia Hosiptal, Bangalore. We surveyed 60 patients who had a scheduled outpatient appointment in Department of General Medicine, Department of Obstetrics and Gynecology and the Orthopedics department, as these departments had a heavy patient flow and had higher contributions to the top line of the hospital. Results: Majority (64%) of the patients preferred to be sent an SMS reminder on the outpatient appointment schedule. 37 (61%) respondents stated that the ideally, reminders could be effective only if they are sent 24-48 hours prior to the appointment schedule. 41(68%) respondents were of the opinion that a minimum of two reminders would be necessary to ensure patients show up for the appointment. 1% level of significance. It also observed that there is strong association between age and preference on mode of reminder (P=0.002).

Keywords: reminder systems, appointment show-ups, SMS reminders, health Information

Procedia PDF Downloads 356
9545 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 464
9544 Condition Optimization for Trypsin and Chymotrypsin Activities in Economic Animals

Authors: Mallika Supa-Aksorn, Buaream Maneewan, Jiraporn Rojtinnakorn

Abstract:

For animals, trypsin and chymotrypsin are the 2 proteases that play the important role in protein digestion and involving in growth rate. In many animals, these two enzymes are indicated as growth parameter by feed. Although enzyme assay at optimal condition is significant for its accuracy activity determination. There is less report of trypsin and chymotrypsin. Therefore, in this study, optimization of pH and temperature for trypsin (T) and chymotrypsin (C) in economic species; i.e. Nile tilapia (Oreochromis niloticus), sand goby (Oxyeleotoris marmoratus), giant freshwater prawn (Macrobachium rosenberchii) and native chicken (Gallus gallus) were investigated. Each enzyme of each species was assaying for its specific activity with variation of pH in range of 2-12 and temperature in range of 30-80 °C. It revealed that, for Nile tilapia, T had optimal condition at pH 9 and temperature 50-80 °C, whereas C had optimal condition at pH 8 and temperature 60 °C. For sand goby, T had optimal condition at pH 7 and temperature of 50 °C, while C had optimal condition at pH 11 and temperature of 70-75 °C. For juvenile freshwater prawn, T had optimal condition at pH 10-11 and temperature of 60-65 °C, C had optimal condition at pH 8 and temperature of 70°C. For starter native chicken, T has optimal condition at pH 7 and temperature of 70 °C, whereas C had o optimal condition at pH 8 and temperature of 60°C. This information of optimal conditions will be high valuable in further for, actual enzyme measurement of T and C activities that benefit for growth and feed analysis.

Keywords: trypsin, chymotrypsin, Oreochromis niloticus, Oxyeleotoris marmoratus, Macrobachium rosenberchii, Gallus gallus

Procedia PDF Downloads 261
9543 Design, Construction And Validation Of A Simple, Low-cost Phi Meter

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

The use of a phi meter allows for definition of equivalence ratio during a fire test. Previous phi meter designs have used expensive catalysts and had restricted portability due to the large furnace and requirement for pure oxygen. The new design of the phi meter did not require the use of a catalyst. The furnace design was based on the existing micro-scale combustion calorimetry (MCC) furnace and operating conditions based on the secondary oxidizer furnace used in the steady state tube furnace (SSTF). Preliminary tests were conducted to study the effects of varying furnace temperatures on combustion efficiency. The SSTF was chosen to validate the phi meter measurements as it can both pre-set and independently quantify the equivalence ratio during a test. The data were in agreement with the data obtained on the SSTF. It was also validated by a comparison of CO2 yields obtained from the SSTF oxidizer and those obtained by the phi meter. The phi meter designed and constructed in this work was proven to work effectively on a bench-scale. The phi meter was then used to measure the equivalence ratio on a series of large-scale ISO 9705 tests for numerous fire conditions. The materials used were a range of non-homogenous materials such as polyurethane. The measurements corresponded accurately to the data collected, showing the novel design can be used from bench to large-scale tests to measure equivalence ratio. This cheaper, more portable, safer and easier to use phi meter design will enable more widespread use and the ability to quantify fire conditions of tests, allowing for better understanding of flammability and smoke toxicity.

Keywords: phi meter, smoke toxicity, fire condition, ISO9705, novel equipment

Procedia PDF Downloads 106
9542 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 47
9541 Photon Blockade in Non-Hermitian Optomechanical Systems with Nonreciprocal Couplings

Authors: J. Y. Sun, H. Z. Shen

Abstract:

We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one (coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon sources in the non-Hermitian optomechanical system.

Keywords: optomechanical systems, photon blockade, non-hermitian, exceptional points

Procedia PDF Downloads 146
9540 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 217
9539 Axiomatic Design and Organization Design: Opportunities and Challenges in Transferring Axiomatic Design to the Social Sciences

Authors: Nicolay Worren, Christopher A. Brown

Abstract:

Axiomatic design (AD) has mainly been applied to support the design of physical products and software solutions. However, it was intended as a general design approach that would also be applicable to the design of social systems, including organizations (i.e., organization design). In this article, we consider how AD may be successfully transferred to the field of organizational design. On the one hand, it provides a much-needed pragmatic approach that can help leaders clarify the link between the purpose and structure of their organizations, identify ineffective organizational structures, and increase the chance of achieving strategic goals. On the other hand, there are four conceptual challenges that may create uncertainty and resistance among scholars and practitioners educated in the social sciences: 1) The exclusive focus in AD on negative interdependencies ('coupling'); 2) No obvious way of representing the need for integration across design parameters (DPs); 3) A lack of principles for handling control processes that seem to require 'deliberate coupling' of FRs; and 4) A lack of principles for handling situations where conflicting FRs (i.e., coupling) might require integration rather than separation. We discuss alternative options for handling these challenges so that scholars and practitioners can make use of AD for organization design.

Keywords: axiomatic design, organization design, social systems, concept definitions

Procedia PDF Downloads 131
9538 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 94
9537 Scientific and Technical Basis for the Application of Textile Structures in Glass Using Pate De Verre Technique

Authors: Walaa Hamed Mohamed Hamza

Abstract:

Textile structures are the way in which the threading process of both thread and loom is done together to form the woven. Different methods of attaching the clothing and the flesh produce different textile structures, which differ in their surface appearance from each other, including so-called simple textile structures. Textile compositions are the basis of woven fabric, through which aesthetic values can be achieved in the textile industry by weaving threads of yarn with the weft at varying degrees that may reach the total control of one of the two groups on the other. Hence the idea of how art and design can be used using different textile structures under the modern techniques of pate de verre. In the creation of designs suitable for glass products employed in the interior architecture. The problem of research: The textile structures, in general, have a significant impact on the appearance of the fabrics in terms of form and aesthetic. How can we benefit from the characteristics of different textile compositions in different glass designs with different artistic values. The research achieves its goal by the investment of simple textile structures in innovative artistic designs using the pate de verre technique, as well as the use of designs resulting from the textile structures in the external architecture to add various aesthetic values. The importance of research in the revival of heritage using ancient techniques, as well as synergy between different fields of applied arts such as glass and textile, and also study the different and diverse effects resulting from each fabric composition and the possibility of use in various designs in the interior architecture. The research will be achieved that by investing in simple textile compositions, innovative artistic designs produced using pate de verre technology can be used in interior architecture.

Keywords: glass, interior architecture, pate de verre, textile structures

Procedia PDF Downloads 297
9536 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: mechanical intelligence, object manipulation, passive mechanism, passive non-prehensile manipulation

Procedia PDF Downloads 486
9535 Stochastic Programming and C-Somga: Animal Ration Formulation

Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna

Abstract:

A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.

Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization

Procedia PDF Downloads 448
9534 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 80
9533 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 201
9532 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture

Authors: K. Ravi, Sabu Subhash

Abstract:

Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.

Keywords: bentonite, deep geological repository, thermal history, undrained shear strength

Procedia PDF Downloads 348
9531 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 43
9530 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 149
9529 The Role of Organizational Culture, Work Discipline, and Employee Motivation towards Employees Performance at Personal Care and Cosmetic Department Flammable PT XYZ Cosmetics

Authors: Novawiguna Kemalasari, Ahmad Badawi Saluy

Abstract:

This research is a planned activity to find an objective answer to PT XYZ problem through scientific procedure. In this study, It was used quantitative research methods by using samples taken from a department selected by researchers. This study aims to analyze the influence of organizational culture, work discipline and work motivation on employee performance of Personal Care & Cosmetic Department (PCC) Flammable PT XYZ. This research was conducted at PT XYZ Personal Care & Cosmetic Department (PCC) Flammable involving 82 employees as respondents, the data were obtained by using questionnaires filled in self-rating by respondents. The data were analyzed by multiple linear regression model processed by using SPSS version 22. The result of research showed that organizational culture variable, work discipline and work motivation had significant effect to employee performance.

Keywords: organizational culture, work discipline, employee motivation, employees performance

Procedia PDF Downloads 254
9528 Context-Aware Recommender Systems Using User's Emotional State

Authors: Hoyeon Park, Kyoung-jae Kim

Abstract:

The product recommendation is a field of research that has received much attention in the recent information overload phenomenon. The proliferation of the mobile environment and social media cannot help but affect the results of the recommendation depending on how the factors of the user's situation are reflected in the recommendation process. Recently, research has been spreading attention to the context-aware recommender system which is to reflect user's contextual information in the recommendation process. However, until now, most of the context-aware recommender system researches have been limited in that they reflect the passive context of users. It is expected that the user will be able to express his/her contextual information through his/her active behavior and the importance of the context-aware recommender system reflecting this information can be increased. The purpose of this study is to propose a context-aware recommender system that can reflect the user's emotional state as an active context information to recommendation process. The context-aware recommender system is a recommender system that can make more sophisticated recommendations by utilizing the user's contextual information and has an advantage that the user's emotional factor can be considered as compared with the existing recommender systems. In this study, we propose a method to infer the user's emotional state, which is one of the user's context information, by using the user's facial expression data and to reflect it on the recommendation process. This study collects the facial expression data of a user who is looking at a specific product and the user's product preference score. Then, we classify the facial expression data into several categories according to the previous research and construct a model that can predict them. Next, the predicted results are applied to existing collaborative filtering with contextual information. As a result of the study, it was shown that the recommended results of the context-aware recommender system including facial expression information show improved results in terms of recommendation performance. Based on the results of this study, it is expected that future research will be conducted on recommender system reflecting various contextual information.

Keywords: context-aware, emotional state, recommender systems, business analytics

Procedia PDF Downloads 233
9527 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 225
9526 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 152
9525 Urban Innovations: Towards a Comprehensive and Sustainable City Development

Authors: Sarang Yeola

Abstract:

A smart city can be defined as a city that uses Information and Communication Technologies (ICT) to enhance its sustainability, workability and livability. It can be viewed as a ‘System of Systems’. We propose decentralization of power and centralization of system. We are presenting a bird's eye view of the system as a whole. The holistic view includes the entirety of human activity in an area including city governments, schools, hospitals, infrastructure, resources, business and people. The main objective for development of Nashik as a smart city is to identify the flaws of the existing systems, eliminate them and come up with innovative and feasible solutions for the betterment of masses. The Make in India is a visionary proposal for FDI in India. It should be managed that the campaign and the industrial estates work in synchronization for boosting the setup of new industrial units in and around Nashik. A smart grid is a modernized electrical grid that uses analog or digital information and communications technology to gather and act on information. We have identified major domains for making Nashik a smart city by surveying the existing infrastructure, challenges and problems faced and the proposed solutions through innovative ideas.

Keywords: transport, (bus rapid transit system) BRTS, metrorail, autos

Procedia PDF Downloads 380
9524 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation

Authors: Fazia Rahmoune, Sofiane Ziani

Abstract:

Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.

Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis

Procedia PDF Downloads 191
9523 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 99
9522 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh

Abstract:

The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.

Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength

Procedia PDF Downloads 66