Search results for: decision distance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5900

Search results for: decision distance

50 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 74
49 The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley

Authors: Mario Tauzene Afonso Matangue, Ivan Andres Sanchez Ortiz

Abstract:

The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering.

Keywords: annual infections risk, lettuce, non-parametric bootstrapping, quantitative microbial risk assessment tools

Procedia PDF Downloads 120
48 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73
47 A Multi-Model Approach to Assess Atlantic Bonito (Sarda Sarda, Bloch 1793) in the Eastern Atlantic Ocean: A Case Study of the Senegalese Exclusive Economic Zone

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, healthy stock, sustainable, SEEZ, temporary management measures

Procedia PDF Downloads 58
46 How the Writer Tells the Story Should Be the Primary Concern rather than Who Can Write about Whom: The Limits of Cultural Appropriation Vis-à-Vis The Ethics of Narrative Empathy

Authors: Alexandra Cheira

Abstract:

Cultural appropriation has been theorised as a form of colonialism in which members of a dominant culture reduce cultural elements that are deeply meaningful to a minority culture to the category of the “exotic other” since they do not experience the oppression and discriminations faced by members of the minority culture. Yet, in the particular case of literature, writers such as Lionel Shriver and Bernardine Evaristo have argued that authors from a cultural majority have a right to write in the voice of someone from a cultural minority, hence attacking the idea that this is a form of cultural appropriation. By definition, Shriver and Evaristo claim, writers are supposed to write beyond their own culture, gender, class, and/ or race. In this light, this paper discusses the limits of cultural appropriation vis-à-vis the ethics of narrative empathy by addressing the mixed critical reception of Kathryn Stockett’s The Help (2009) and Jeanine Cummins’s American Dirt (2020). In fact, both novels were acclaimed as global eye-openers regarding the struggles of respectively South American migrants and African American maids. At the same time, both novelists have been accused of cultural appropriation by telling a story that is not theirs to tell, given the fact that they are white women telling these stories in what critics have argued is really an American voice telling a story to American readers.These claims will be investigated within the framework of Edward Said’s foundational examination of Orientalism in the field of postcolonial studies as a Western style for authoritatively restructuring the Orient. This means that Orientalist stereotypes regarding Eastern cultures have implicitly validated colonial and imperial pursuits, in the specific context of literary representations of African American and Mexican cultures by white writers. At the same time, the conflicted reception of American Dirt and The Help will be examined within the critical framework of narrative empathy as theorised by Suzanne Keen. Hence, there will be a particular focus on the way a reader’s heated perception that the author’s perspective is purely dishonest can result from a friction between an author’s intention and a reader’s experience of narrative empathy, while a shared sense of empathy between authors and readers can be a rousing momentum to move beyond literary response to social action.Finally, in order to assess that “the key question should not be who can write about whom, but how the writer tells the story”, the recent controversy surrounding Dutch author Marieke Lucas Rijneveld’s decision to resign the translation of American poet Amanda Gorman’s work into Dutch will be duly investigated. In fact, Rijneveld stepped out after journalist and activist Janice Deul criticised Dutch publisher Meulenhoff for choosing a translator who was not also Black, despite the fact that 22-year-old Gorman had selected the 29-year-old Rijneveld herself, as a fellow young writer who had likewise come to fame early on in life. In this light, the critical argument that the controversial reception of The Help reveals as much about US race relations in the early twenty-first century as about the complex literary transactions between individual readers and the novel itself will also be discussed in the extended context of American Dirt and white author Marieke Rijneveld’s withdrawal from the projected translation of Black poet Amanda Gorman.

Keywords: cultural appropriation, cultural stereotypes, narrative empathy, race relations

Procedia PDF Downloads 70
45 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 44
44 Examining Three Psychosocial Factors of Tax Compliance in Self-Employed Individuals using the Mindspace Framework - Evidence from Australia and Pakistan

Authors: Amna Tariq Shah

Abstract:

Amid the pandemic, the contemporary landscape has experienced accelerated growth in small business activities and an expanding digital marketplace, further exacerbating the issue of non-compliance among self-employed individuals through aggressive tax planning and evasion. This research seeks to address these challenges by developing strategic tax policies that promote voluntary compliance and improve taxpayer facilitation. The study employs the innovative MINDSPACE framework to examine three psychosocial factors—tax communication, tax literacy, and shaming—to optimize policy responses, address administrative shortcomings, and ensure adequate revenue collection for public goods and services. Preliminary findings suggest that incomprehensible communication from tax authorities drives individuals to seek alternative, potentially biased sources of tax information, thereby exacerbating non-compliance. Furthermore, the study reveals low tax literacy among Australian and Pakistani respondents, with many struggling to navigate complex tax processes and comprehend tax laws. Consequently, policy recommendations include simplifying tax return filing and enhancing pre-populated tax returns. In terms of shaming, the research indicates that Australians, being an individualistic society, may not respond well to shaming techniques due to privacy concerns. In contrast, Pakistanis, as a collectivistic society, may be more receptive to naming and shaming approaches. The study employs a mixed-method approach, utilizing interviews and surveys to analyze the issue in both jurisdictions. The use of mixed methods allows for a more comprehensive understanding of tax compliance behavior, combining the depth of qualitative insights with the generalizability of quantitative data, ultimately leading to more robust and well-informed policy recommendations. By examining evidence from opposite jurisdictions, namely a developed country (Australia) and a developing country (Pakistan), the study's applicability is enhanced, providing perspectives from two disparate contexts that offer insights from opposite ends of the economic, cultural, and social spectra. The non-comparative case study methodology offers valuable insights into human behavior, which can be applied to other jurisdictions as well. The application of the MINDSPACE framework in this research is particularly significant, as it introduces a novel approach to tax compliance behavior analysis. By integrating insights from behavioral economics, the framework enables a comprehensive understanding of the psychological and social factors influencing taxpayer decision-making, facilitating the development of targeted and effective policy interventions. This research carries substantial importance as it addresses critical challenges in tax compliance and administration, with far-reaching implications for revenue collection and the provision of public goods and services. By investigating the psychosocial factors that influence taxpayer behavior and utilizing the MINDSPACE framework, the study contributes invaluable insights to the field of tax policy. These insights can inform policymakers and tax administrators in developing more effective tax policies that enhance taxpayer facilitation, address administrative obstacles, promote a more equitable and efficient tax system, and foster voluntary compliance, ultimately strengthening the financial foundation of governments and communities.

Keywords: individual tax compliance behavior, psychosocial factors, tax non-compliance, tax policy

Procedia PDF Downloads 74
43 Factors Associated with Risky Sexual Behaviour in Adolescent Girls and Young Women in Cambodia: A Systematic Review

Authors: Farwa Rizvi, Joanne Williams, Humaira Maheen, Elizabeth Hoban

Abstract:

There is an increase in risky sexual behavior and unsafe sex in adolescent girls and young women aged 15 to 24 years in Cambodia, which negatively affects their reproductive health by increasing the risk of contracting sexually transmitted infections and unintended pregnancies. Risky sexual behavior includes ‘having sex at an early age, having multiple sexual partners, having sex while under the influence of alcohol or drugs, and unprotected sexual behaviors’. A systematic review of quantitative research conducted in Cambodia was undertaken, using the theoretical framework of the Social Ecological Model to identify the personal, social and cultural factors associated with risky sexual behavior and unsafe sex in young Cambodian women. PRISMA guidelines were used to search databases including Medline Complete, PsycINFO, CINAHL Complete, Academic Search Complete, Global Health, and Social Work Abstracts. Additional searches were conducted in Science Direct, Google Scholar and in the grey literature sources. A risk-of-bias tool developed explicitly for the systematic review of cross-sectional studies was used. Summary item on the overall risk of study bias after the inter-rater response showed that the risk-of-bias was high in two studies, moderate in one study and low in one study. The search strategy included a combination of subject terms and free text terms. The medical subject headings (MeSH) terms included were; contracept* or ‘birth control’ or ‘family planning’ or pregnan* or ‘safe sex’ or ‘protected intercourse’ or ‘unprotected intercourse’ or ‘protected sex’ or ‘unprotected sex’ or ‘risky sexual behaviour*’ or ‘abort*’ or ‘planned parenthood’ or ‘unplanned pregnancy’ AND ( barrier* or obstacle* or challenge* or knowledge or attitude* or factor* or determinant* or choic* or uptake or discontinu* or acceptance or satisfaction or ‘needs assessment’ or ‘non-use’ or ‘unmet need’ or ‘decision making’ ) AND Cambodia*. Initially, 300 studies were identified by using key words and finally, four quantitative studies were selected based on the inclusion criteria. The four studies were published between 2010 and 2016. The study participants ranged in age from 10-24 years, single or married, with 3 to 10 completed years of education. The mean age at sexual debut was reported to be 18 years. Using the perspective of the Social Ecological Model, risky sexual behavior was associated with individual-level factors including young age at sexual debut, low education, unsafe sex under the influence of alcohol and substance abuse, multiple sexual partners or transactional sex. Family level factors included living away from parents, orphan status and low levels of family support. Peer and partner level factors included peer delinquency and lack of condom use. Low socioeconomic status at the society level was also associated with risky sexual behaviour. There is scant research on sexual and reproductive health of adolescent girls and young women in Cambodia. Individual, family and social factors were significantly associated with risky sexual behaviour. More research is required to inform potential preventive strategies and policies that address young women’s sexual and reproductive health.

Keywords: adolescents, high-risk sex, sexual activity, unplanned pregnancies

Procedia PDF Downloads 245
42 Impact of Increased Radiology Staffing on After-Hours Radiology Reporting Efficiency and Quality

Authors: Peregrine James Dalziel, Philip Vu Tran

Abstract:

Objective / Introduction: Demand for radiology services from Emergency Departments (ED) continues to increase with greater demands placed on radiology staff providing reports for the management of complex cases. Queuing theory indicates that wide variability of process time with the random nature of request arrival increases the probability of significant queues. This can lead to delays in the time-to-availability of radiology reports (TTA-RR) and potentially impaired ED patient flow. In addition, greater “cognitive workload” of greater volume may lead to reduced productivity and increased errors. We sought to quantify the potential ED flow improvements obtainable from increased radiology providers serving 3 public hospitals in Melbourne Australia. We sought to assess the potential productivity gains, quality improvement and the cost-effectiveness of increased labor inputs. Methods & Materials: The Western Health Medical Imaging Department moved from single resident coverage on weekend days 8:30 am-10:30 pm to a limited period of 2 resident coverage 1 pm-6 pm on both weekend days. The TTA-RR for weekend CT scans was calculated from the PACs database for the 8 month period symmetrically around the date of staffing change. A multivariate linear regression model was developed to isolate the improvement in TTA-RR, between the two 4-months periods. Daily and hourly scan volume at the time of each CT scan was calculated to assess the impact of varying department workload. To assess any improvement in report quality/errors a random sample of 200 studies was assessed to compare the average number of clinically significant over-read addendums to reports between the 2 periods. Cost-effectiveness was assessed by comparing the marginal cost of additional staffing against a conservative estimate of the economic benefit of improved ED patient throughput using the Australian national insurance rebate for private ED attendance as a revenue proxy. Results: The primary resident on call and the type of scan accounted for most of the explained variability in time to report availability (R2=0.29). Increasing daily volume and hourly volume was associated with increased TTA-RR (1.5m (p<0.01) and 4.8m (p<0.01) respectively per additional scan ordered within each time frame. Reports were available 25.9 minutes sooner on average in the 4 months post-implementation of double coverage (p<0.01) with additional 23.6 minutes improvement when 2 residents were on-site concomitantly (p<0.01). The aggregate average improvement in TTA-RR was 24.8 hours per weekend day This represents the increased decision-making time available to ED physicians and potential improvement in ED bed utilisation. 5% of reports from the intervention period contained clinically significant addendums vs 7% in the single resident period but this was not statistically significant (p=0.7). The marginal cost was less than the anticipated economic benefit based assuming a 50% capture of improved TTA-RR inpatient disposition and using the lowest available national insurance rebate as a proxy for economic benefit. Conclusion: TTA-RR improved significantly during the period of increased staff availability, both during the specific period of increased staffing and throughout the day. Increased labor utilisation is cost-effective compared with the potential improved productivity for ED cases requiring CT imaging.

Keywords: workflow, quality, administration, CT, staffing

Procedia PDF Downloads 112
41 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method

Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López

Abstract:

The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.

Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people

Procedia PDF Downloads 128
40 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 341
39 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 18
38 Sustainable Housing and Urban Development: A Study on the Soon-To-Be-Old Population's Impetus to Migrate

Authors: Tristance Kee

Abstract:

With the unprecedented increase in elderly population globally, it is critical to search for new sustainable housing and urban development alternatives to traditional housing options. This research examines concepts of elderly migration pattern in the context of a high density city in Hong Kong to Mainland China. The research objectives are to: 1) explore the relationships between soon-to-be-old elderly and their intentions to move to Mainland upon retirement and their demographic characteristics; and 2) What are the desired amenities, locational factors and activities that are expected in the soon-to-be-old generation’s retirement housing environment? Primary data was collected through questionnaire survey conducted using random sampling method with respondents aged between 45-64 years old. The face-to-face survey was completed by 500 respondents. The survey was divided into four sections. The first section focused on respondent’s demographic information such as gender, age, education attainment, monthly income, housing tenure type and their visits to Mainland China. The second section focused on their retirement plans in terms of intended retirement age, prospective retirement funding and retirement housing options. The third section focused on the respondent’s attitudes toward retiring in Mainland for housing. It asked about their intentions to migrate retire into Mainland and incentives to retire in Hong Kong. The fourth section focused on respondent’s ideal housing environment including preferred housing amenities, desired living environment and retirement activities. The dependent variable in this study was ‘respondent’s consideration to move to Mainland China upon retirement’. Eight primary independent variables were integrated into the study to identify the correlations between them and retirement migration plan. The independent variables include: gender, age, marital status, monthly income, present housing tenure type, property ownership in Hong Kong, relationship with Mainland and the frequency of visiting Mainland China. In addition to the above independent variables, respondents were asked to indicate their retirement plans (retirement age, funding sources and retirement housing options), incentives to migrate to retire (choices included: property ownership, family relations, cost of living, living environment, medical facilities, government welfare benefits, etc.), perceived ideal retirement life qualities including desired amenities (sports, medical and leisure facilities etc.), desired locational qualities (green open space, convenient transport options and accessibility to urban settings etc.) and desired retirement activities (home-based leisure, elderly friendly sports, cultural activities, child care, social activities, etc.). The finding shows correlations between the used independent variables and consideration to migrate for housing options. The two independent variables indicated a possible correlation were gender and the frequency of visiting Mainland at present. When considering the increasing property prices across the border and strong social relationships, potential retirement migration is a very subjective decision that could vary from person to person. This research adds knowledge to housing research and migration study. Although the research is based in Mainland, most of the characteristics identified including better medical services, government welfare and sound urban amenities are shared qualities for all sustainable urban development and housing strategies.

Keywords: elderly migration, housing alternative, soon-to-be-old, sustainable environment

Procedia PDF Downloads 211
37 Sustainability Framework for Water Management in New Zealand's Canterbury Region

Authors: Bryan Jenkins

Abstract:

Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.

Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management

Procedia PDF Downloads 158
36 Implementation of Autologous Adipose Graft from the Abdomen for Complete Fat Pad Loss of the Heel Following a Traumatic Open Fracture Secondary to a Motor Vehicle Accident: A Case Study

Authors: Ahmad Saad, Shuja Abbas, Breanna Marine

Abstract:

Introduction: This study explores the potential applications of autologous pedal fat pad grafting as a minimally invasive therapeutic strategy for addressing pedal fat pad loss. Without adequate shock absorbing tissue, a patient can experience functional deficits, ulcerations, loss of quality of life, and significant limitations with ambulation. This study details a novel technique involving autologous adipose grafting from the abdomen to enhance plantar fat pad thickness in a patient involved in a severe motor vehicle accident which resulted in total fat pad loss of the heel. Autologous adipose grafting (AAG) was used following adipose allografting in an effort to recreate a normal shock absorbing surface to allow return to activities of daily living and painless ambulation. Methods: A 46-year-old male sustained multiple open pedal fractures and necrosis to the heel fat pad after a motorcycle accident, which resulted in complete loss of the calcaneal fat pad. The patient underwent serial debridement’s, utilization of wound vac therapy and split thickness skin grafting to accomplish complete closure, despite complete loss of adipose to area. Patient presented with complaints of pain on ambulation, inability to bear weight on the heel, recurrent ulcerations, admitted had not been ambulating for two years. Clinical exam demonstrated complete loss of the plantar fat pad with a thin layer of epithelial tissue overlying the calcaneal bone, allowing visibility of the osseous contour of the calcaneus. Scar tissue had formed in place of the fat pad, with thickened epithelial tissue extending from the midfoot to the calcaneus. After conservative measures were exhausted, the patient opted for initial management by adipose allograft matrix (AAM) injections. Post operative X-ray imaging revealed noticeable improvement in calcaneal fat pad thickness. At 1 year follow up, the patient was able to ambulate without assistive devices. The fat pad at this point was significantly thicker than it was pre-operatively, but the thickness did not restore to pre-accident thickness. In order to compare the take of allograft versus autografting of adipose tissue, the decision to use adipose autograft through abdominal liposuction harvesting was deemed suitable. A general surgeon completed harvesting of adipose cells from the patient’s abdomen via liposuction, and a podiatric surgeon performed the AAG injection into the heel. Total of 15 cc’s of autologous adipose tissue injected to the calcaneus. Results: There was a visual increase in the calcaneal fat pad thickness both clinically and radiographically. At the 6-week follow up, imaging revealed retention of the calcaneal fat pad thickness. Three months postop, patient returned to activities of daily living and increased quality of life due to their increased ability to ambulate. Discussion: AAG is a novel treatment for pedal fat pad loss. These treatments may be viable and reproducible therapeutic choices for patients suffering from fat pad atrophy, fat pad loss, and/or plantar ulcerations. Both treatments of AAM and AAG exhibited similar therapeutic results by providing pain relief for ambulation and allowing for patients to return to their quality of life.

Keywords: podiatry, wound, adipose, allograft, autograft, wound care, limb reconstruction, injection, limb salvage

Procedia PDF Downloads 82
35 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops

Authors: Simon Komesker, Achim Wagner, Martin Ruskowski

Abstract:

In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.

Keywords: holonic manufacturing system, modular production system, planning, and control, system structure

Procedia PDF Downloads 169
34 Virtual Reference Service as a Space for Communication and Interaction: Providing Infrastructure for Learning in Times of Crisis at Uppsala University

Authors: Nadja Ylvestedt

Abstract:

Uppsala University Library is a geographically dispersed research library consisting of nine subject libraries located in different campus areas throughout the city of Uppsala. Despite the geographical dispersion, it is the library's ambition to be perceived as a cohesive library with consistently high service and quality. A key factor to being one cohesive library is the library's online services, especially the virtual reference service. E-mail, chat and phone are answered by a team of specially trained staff under the supervision of a team leader. When covid-19 hit, well-established routines and processes to provide an infrastructure for students and researchers at the university changed radically. The strong connection between services provided at the library locations as well as at the VRS has been one of the key components of the library’s success in providing patrons with the help they need. With radically minimized availability at the physical locations, the infrastructure was at risk of collapsing. Objectives:- The objective of this project has been to evaluate the consequences of the sudden change in the organization of the library. The focus of this evaluation is the library’s VRS as an important space for learning, interaction and communication between the library and the community when other traditional spaces were not available. The goal of this evaluation is to capture the lessons learned from providing infrastructure for learning and research in times of crisis both on a practical, user-centered level but also to stress the importance of leadership in ever-changing environments that supports and creates agile, flexible services and teams instead of rigid processes adhering to obsolete goals. Results:- Reduced availability at the physical library locations was one of the strategies to prevent the spread of the covid-19 virus. The library staff was encouraged to work from home, so student workers staffed the library’s physical locations during that time, leaving the VRS to be the only place where patrons could get expert help. The VRS had an increase of 65% of questions asked between spring term 2019 and spring term 2020. The VRS team had to navigate often complicated and fast-changing new routines depending on national guidelines. The VRS team has a strong emphasis on agility in their approach to the challenges and opportunities, with methods to evaluate decisions regularly with user experience in mind. Fast decision-making, collecting feedback, an open-minded approach to reviewing rules and processes with both a short-term and a long-term focus and providing a healthy work environment have been key factors in managing this crisis and learn from it. This was resting on a strong sense of ownership regarding the VRS, well-working communication tools and agile and active communication between team members, as well as between the team and the rest of the organization who served as a second-line support system to aid the VRS team. Moving forward, the VRS has become an important space for communication, interaction and provider of infrastructure, implementing new routines and more extensive availability due to the lessons learned during crisis. The evaluation shows that the virtual environment has become an important addition to the physical spaces, existing in its own right but always in connection with and in relationship with the library structure as a whole. Thereby showing that the basis of human interaction stays the same while its form morphs and adapts to changes, thus leaving the virtual environment as a space of communication and infrastructure with unique opportunities for outreach and the potential to become a staple in patron’s education and learning.

Keywords: virtual reference service, leadership, digital infrastructure, research library

Procedia PDF Downloads 170
33 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 100
32 Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration

Authors: Nikhilesh Singh, Shishir Gaur, Anitha K. Sharma

Abstract:

Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation.

Keywords: sustainable management, holistic approach, living lab, integrated river management

Procedia PDF Downloads 59
31 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective

Authors: Smita Singh

Abstract:

Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.

Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms

Procedia PDF Downloads 29
30 Trajectory Optimization for Autonomous Deep Space Missions

Authors: Anne Schattel, Mitja Echim, Christof Büskens

Abstract:

Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.

Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.

Procedia PDF Downloads 412
29 The Securitization of the European Migrant Crisis (2015-2016): Applying the Insights of the Copenhagen School of Security Studies to a Comparative Analysis of Refugee Policies in Bulgaria and Hungary

Authors: Tatiana Rizova

Abstract:

The migrant crisis, which peaked in 2015-2016, posed an unprecedented challenge to the European Union’s (EU) newest member states, including Bulgaria and Hungary. Their governments had to formulate sound migration policies with expediency and sensitivity to the needs of millions of people fleeing violent conflicts in the Middle East and failed states in North Africa. Political leaders in post-communist countries had to carefully coordinate with other EU member states on joint policies and solutions while minimizing the risk of alienating their increasingly anti-migrant domestic constituents. Post-communist member states’ governments chose distinct policy responses to the crisis, which were dictated by factors such as their governments’ partisan stances on migration, their views of the European Union, and the decision to frame the crisis as a security or a humanitarian issue. This paper explores how two Bulgarian governments (Boyko Borisov’s second and third government formed during the 43rd and 44th Bulgarian National Assembly, respectively) navigated the processes of EU migration policy making and managing the expectations of their electorates. Based on a comparative analysis of refugee policies in Bulgaria and Hungary during the height of the crisis (2015-2016) and a temporal analysis of refugee policies in Bulgaria (2015-2018), the paper advances the following conclusions. Drawing on insights of the Copenhagen school of security studies, the paper argues that cultural concerns dominated domestic debates in both Bulgaria and Hungary; both governments framed the issue predominantly as a matter of security rather than humanitarian disaster. Regardless of the similarities in issue framing, however, the two governments sought different paths of tackling the crisis. While the Bulgarian government demonstrated its willingness to comply with EU decisions (such as the proposal for mandatory quotas for refugee relocation), the Hungarian government defied EU directives and became a leading voice of dissent inside the EU. The current Bulgarian government (April 2017 - present) appears to be committed to complying with EU decisions and accepts the strategy of EU burden-sharing, while the Hungarian government has continually snubbed the EU’s appeals for cooperation despite the risk of hefty financial penalties. Hungary’s refugee policies have been influenced by the parliamentary representation of the far right-wing party Movement for a Better Hungary (Jobbik), which has encouraged the majority party (FIDESZ) to adopt harsher anti-migrant rhetoric and more hostile policies toward refugees. Bulgaria’s current government is a coalition of the center-right Citizens for a European Development of Bulgaria (GERB) and its far right-wing junior partners – the United Patriots (comprised of three nationalist political parties). The parliamentary presence of Jobbik in Hungary’s parliament has magnified the anti-migrant stance, rhetoric, and policies of Mr. Orbán’s Civic Alliance; we have yet to observe a substantial increase in the anti-migrant rhetoric and policies in Bulgaria’s case. Analyzing responses to the migrant/refugee crisis is a critical opportunity to understand how issues of cultural identity and belonging, inclusion and exclusion, regional integration and disintegration are debated and molded into policy in Europe’s youngest member states in the broader EU context.

Keywords: Copenhagen School, migrant crisis, refugees, security

Procedia PDF Downloads 121
28 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen

Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes

Abstract:

In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.

Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles

Procedia PDF Downloads 262
27 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 373
26 Role of Dedicated Medical Social Worker in Fund Mobilisation and Economic Evaluation in Ovarian Cancer: Experience from a Tertiary Referral Centre in Eastern India

Authors: Aparajita Bhattacharya, Mousumi Dutta, Zakir Husain, Dionne Sequeira, Asima Mukhopadhyay

Abstract:

Background: Tata Medical Centre (TMC), Kolkata is a major cancer referral centre in Eastern India and neighbouring countries providing state of the art facilities; however, it is a non-profit organisation with patients requiring to pay at subsidised rates. Although a system for social assessment and applying for governmental/ non-governmental (NGO) funds is in place, access is challenging. Amongst gynaecological cancers (GC), ovarian cancer (OC) is associated with the highest treatment cost; majority of which is required at the beginning when complex surgery is performed and funding arrangements cannot be made in time. We therefore appointed a dedicated Medical Social Worker (MSW) in 2016, supported by NGO for GC patients in order to assist patients/family members to access/avail these funds more readily and assist in economic evaluation for both direct and opportunity costs. Objectives: To reflect on our experience and challenges in collecting data on economic evaluation of cancer patients and compare success rates in achieving fund mobilization after introduction of MSW. Methods: A Retrospective survey. Patients with OC and their relatives were seen by the MSW during the initial outpatients department visit and followed though till discharge from the hospital and during follow-up visits. Assistance was provided in preparing the essential documents/paperwork/contacts for the funding agencies including both governmental (Chief-Minister/Prime-Minister/President) and NGO sources. In addition, a detailed questionnaire was filled up for economic assessment of direct/opportunity costs during the entire treatment and 12 months follow up period which forms a part of the study called HEPTROC (Health economic evaluation of primary treatment for ovarian cancer) developed in collaboration with economics departments of Universities. Results: In 2015, 102 patients were operated for OC; only 16 patients (15.68 %) had availed funding of a total sum of INR 1640000 through the hospital system for social assessment. Following challenges were faced by majority of the relatives: 1. Gathering important documents/proper contact details for governmental funding bodies and difficulty in following up the current status 3. Late arrival of funds. In contrast in 2016, 104 OC patients underwent surgery; the direct cost of treatment was significantly higher (median, INR 300000- 400000) compared to other GCs (n=274). 98/104 (94.23%) OC patients could be helped to apply for funds and 90/104(86.56%) patients received funding amounting to a total of INR 10897000. There has been a tenfold increase in funds mobilized in 2016 after the introduction of dedicated MSW in GC. So far, in 2017 (till June), 46/54(85.18%) OC patients applied for funds and 37/54(68.51%) patients have received funding. In a qualitative survey, all patients appreciated the role of the MSW who subsequently became the key worker for patient follow up and the chief portal for patient reported outcome monitoring. Data collection quality for the HEPTROC study was improved when questionnaires were administered by the MSW compared to researchers. Conclusion: Introduction of cancer specific MSW can expedite the availability of funds required for cancer patients and it can positively impact on patient satisfaction and outcome reporting. The economic assessment will influence fund allocation and decision for policymaking in ovarian cancer. Acknowledgement: Jivdaya Foundation Dallas, Texas.

Keywords: economic evaluation, funding, medical social worker, ovarian cancer

Procedia PDF Downloads 154
25 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
24 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
23 Closing down the Loop Holes: How North Korea and Other Bad Actors Manipulate Global Trade in Their Favor

Authors: Leo Byrne, Neil Watts

Abstract:

In the complex and evolving landscape of global trade, maritime sanctions emerge as a critical tool wielded by the international community to curb illegal activities and alter the behavior of non-compliant states and entities. These sanctions, designed to restrict or prohibit trade by sea with sanctioned jurisdictions, entities, or individuals, face continuous challenges due to the sophisticated evasion tactics employed by countries like North Korea. As the Democratic People's Republic of Korea (DPRK) diverts significant resources to circumvent these measures, understanding the nuances of their methodologies becomes imperative for maintaining the integrity of global trade systems. The DPRK, one of the most sanctioned nations globally, has developed an intricate network to facilitate its trade in illicit goods, ensuring the flow of revenue from designated activities continues unabated. Given its geographic and economic conditions, North Korea predominantly relies on maritime routes, utilizing foreign ports to route its illicit trade. This reliance on the sea is exploited through various sophisticated methods, including the use of front companies, falsification of documentation, commingling of bulk cargos, and physical alterations to vessels. These tactics enable the DPRK to navigate through the gaps in regulatory frameworks and lax oversight, effectively undermining international sanctions regimes Maritime sanctions carry significant implications for global trade, imposing heightened risks in the maritime domain. The deceptive practices employed not only by the DPRK but also by other high-risk jurisdictions, necessitate a comprehensive understanding of UN targeted sanctions. For stakeholders in the maritime sector—including maritime authorities, vessel owners, shipping companies, flag registries, and financial institutions serving the shipping industry—awareness and compliance are paramount. Violations can lead to severe consequences, including reputational damage, sanctions, hefty fines, and even imprisonment. To mitigate risks associated with these deceptive practices, it is crucial for maritime sector stakeholders to employ rigorous due diligence and regulatory compliance screening measures. Effective sanctions compliance serves as a protective shield against legal, financial, and reputational risks, preventing exploitation by international bad actors. This requires not only a deep understanding of the sanctions landscape but also the capability to identify and manage risks through informed decision-making and proactive risk management practices. As the DPRK and other sanctioned entities continue to evolve their sanctions evasion tactics, the international community must enhance its collective efforts to demystify and counter these practices. By leveraging more stringent compliance measures, stakeholders can safeguard against the illicit use of the maritime domain, reinforcing the effectiveness of maritime sanctions as a tool for global security. This paper seeks to dissect North Korea's adaptive strategies in the face of maritime sanctions. By examining up-to-date, geographically, and temporally relevant case studies, it aims to shed light on the primary nodes through which Pyongyang evades sanctions and smuggles goods via third-party ports. The goal is to propose multi-level interaction strategies, ranging from governmental interventions to localized enforcement mechanisms, to counteract these evasion tactics.

Keywords: maritime, maritime sanctions, international sanctions, compliance, risk

Procedia PDF Downloads 70
22 An Engaged Approach to Developing Tools for Measuring Caregiver Knowledge and Caregiver Engagement in Juvenile Type 1 Diabetes

Authors: V. Howard, R. Maguire, S. Corrigan

Abstract:

Background: Type 1 Diabetes (T1D) is a chronic autoimmune disease, typically diagnosed in childhood. T1D puts an enormous strain on families; controlling blood-glucose in children is difficult and the consequences of poor control for patient health are significant. Successful illness management and better health outcomes can be dependent on quality of caregiving. On diagnosis, parent-caregivers face a steep learning curve as T1D care requires a significant level of knowledge to inform complex decision making throughout the day. The majority of illness management is carried out in the home setting, independent of clinical health providers. Parent-caregivers vary in their level of knowledge and their level of engagement in applying this knowledge in the practice of illness management. Enabling researchers to quantify these aspects of the caregiver experience is key to identifying targets for psychosocial support interventions, which are desirable for reducing stress and anxiety in this highly burdened cohort, and supporting better health outcomes in children. Currently, there are limited tools available that are designed to capture this information. Where tools do exist, they are not comprehensive and do not adequately capture the lived experience. Objectives: Development of quantitative tools, informed by lived experience, to enable researchers gather data on parent-caregiver knowledge and engagement, which accurately represents the experience/cohort and enables exploration of questions that are of real-world value to the cohort themselves. Methods: This research employed an engaged approach to address the problem of quantifying two key aspects of caregiver diabetes management: Knowledge and engagement. The research process was multi-staged and iterative. Stage 1: Working from a constructivist standpoint, literature was reviewed to identify relevant questionnaires, scales and single-item measures of T1D caregiver knowledge and engagement, and harvest candidate questionnaire items. Stage 2: Aggregated findings from the review were circulated among a PPI (patient and public involvement) expert panel of caregivers (n=6), for discussion and feedback. Stage 3: In collaboration with the expert panel, data were interpreted through the lens of lived experience to create a long-list of candidate items for novel questionnaires. Items were categorized as either ‘knowledge’ or ‘engagement’. Stage 4: A Delphi-method process (iterative surveys) was used to prioritize question items and generate novel questions that further captured the lived experience. Stage 5: Both questionnaires were piloted to refine wording of text to increase accessibility and limit socially desirable responding. Stage 6: Tools were piloted using an online survey that was deployed using an online peer-support group for caregivers for Juveniles with T1D. Ongoing Research: 123 parent-caregivers completed the survey. Data analysis is ongoing to establish face and content validity qualitatively and through exploratory factor analysis. Reliability will be established using an alternative-form method and Cronbach’s alpha will assess internal consistency. Work will be completed by early 2024. Conclusion: These tools will enable researchers to gain deeper insights into caregiving practices among parents of juveniles with T1D. Development was driven by lived experience, illustrating the value of engaged research at all levels of the research process.

Keywords: caregiving, engaged research, juvenile type 1 diabetes, quantified engagement and knowledge

Procedia PDF Downloads 55
21 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 114