Search results for: universal testing machine
482 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)
Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli
Abstract:
Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence
Procedia PDF Downloads 18481 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority
Authors: Vahid Asadzadeh, Amin Ataee
Abstract:
Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau and Mouffe had in mind) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media
Procedia PDF Downloads 147480 Enabling Self-Care and Shared Decision Making for People Living with Dementia
Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan
Abstract:
People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.Keywords: care goals, decision-making, dementia, self-care, sensors
Procedia PDF Downloads 172479 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 74478 Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel
Authors: Bruno Vicente, Sandra Rafael, Vera Rodrigues, Sandra Sorte, Sara Silva, Ana Isabel Miranda, Carlos Borrego
Abstract:
Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions).Keywords: urban microclimate, pedestrian comfort, numerical modelling, wind tunnel experiments
Procedia PDF Downloads 232477 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report
Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake
Abstract:
Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.Keywords: autism, POTs, CHARGE, VNS
Procedia PDF Downloads 90476 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk
Authors: Moses Jenkins
Abstract:
Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.Keywords: insulation, condensation, masonry, historic
Procedia PDF Downloads 174475 Ergonomic Assessment of Workplace Environment of Flour Mill Workers
Authors: Jayshree P. Zend, Ashatai B. Pawar
Abstract:
The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.Keywords: physiological cost, energy expenditure, musculoskeletal problems
Procedia PDF Downloads 403474 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 190473 Differentials of Motor Fitness Components among the School Children of Rural and Urban Areas of the Jammu Region
Authors: Sukhdev Singh, Baljinder Singh Bal, Amandeep Singh, Kanchan Thappa
Abstract:
A nation's future almost certainly rests on the future of its children, and a nation's wellbeing can be greatly improved by providing for the right upbringing of its children. Participating in physical education and sports programmes is crucial for reaching one's full potential. As we are all aware, sports have recently become incredibly popular on a global scale. Sports are continually becoming more and more popular, and this positive trend is probably going to last for some time to come. Motor abilities will provide more accurate information on the developmental process of children. Motor fitness is a component of physical fitness that includes strength, speed, flexibility, and agility, and is related to enhanced performance and the development of motor skills. In recent years, there has been increased interest in the differences in child growth between urban and rural environments. Differences in student growth, body dimensions, body composition, and fitness levels due to urban and rural environmental disparities have come into focus in recent years. The main aim of this study is to know the differentials of motor fitness components among the school children of rural and urban areas of the Jammu region. Material and Methods: In total, sixty male subjects (mean ± SD; age, 16.475 ± 1.0124 yrs.; height, 172.8 ± 2.0153 cm; Weight, 59.75 ± 3.628 kg) from the Jammu region took part in the study. A minimum sample size of 40 subjects was obtained and was derived from Rural (N1=20) and Urban (N2=20) school-going children. Statistical Applications: The Statistical Package for the Social Sciences (SPSS) version 14.0 was used for all analyses. The differences in the mean of each group for the selected variable were tested for the significance of difference by an independent samples t-test. For testing the hypotheses, the level of significance was set at 0.05. Results: Results revealed that there were significant differences of leg explosive strength (p=0.0040*), dynamic balance (p=0.0056*), and Agility (p=0.0176*) among the School Children of the rural and urban areas of the Jammu region. However, Results further revealed that there were not significant differences of cardio respiratory endurance (p=0.8612), speed (p=0.2231), Low Back/Hamstring Flexibility (p=0.6478), and Two Hand Coordination. (p= 0.0953) among the School Children of the rural and urban areas of the Jammu region. Conclusion: The results of study showed that there is significance difference between Rural and Urban School children of the Jammu region with regards to a variable," leg explosive strength, dynamic balance, Agility” and the there is no significance difference between Rural and Urban School children of the Jammu region with regards variable “cardio-respiratory endurance, speed, Low Back/Hamstring Flexibility, Two Hand Coordination”.Keywords: motor fitness, rural areas, school children, urban areas
Procedia PDF Downloads 77472 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 285471 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia
Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek
Abstract:
Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines
Procedia PDF Downloads 172470 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements
Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel
Abstract:
Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance
Procedia PDF Downloads 295469 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent
Authors: John T. Leman, James Gibson, Peter J. Bonitatibus
Abstract:
There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization
Procedia PDF Downloads 38468 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 223467 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries
Authors: Fang Li, Jiazhao Wang, Jianmin Ma
Abstract:
The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries
Procedia PDF Downloads 141466 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage
Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik
Abstract:
The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis
Procedia PDF Downloads 320465 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 228464 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 122463 Schema Therapy as Treatment for Adults with Autism Spectrum Disorder and Comorbid Personality Disorder: A Multiple Baseline Case Series Study Testing Cognitive-Behavioral and Experiential Interventions
Authors: Richard Vuijk, Arnoud Arntz
Abstract:
Rationale: To our knowledge treatment of personality disorder comorbidity in adults with autism spectrum disorder (ASD) is understudied and is still in its infancy: We do not know if treatment of personality disorders may be applicable to adults with ASD. In particular, it is unknown whether patients with ASD benefit from experiential techniques that are part of schema therapy developed for the treatment of personality disorders. Objective: The aim of the study is to investigate the efficacy of a schema mode focused treatment with adult clients with ASD and comorbid personality pathology (i.e. at least one personality disorder). Specifically, we investigate if they can benefit from both cognitive-behavioral, and experiential interventions. Study design: A multiple baseline case series study. Study population: Adult individuals (age > 21 years) with ASD and at least one personality disorder. Participants will be recruited from Sarr expertise center for autism in Rotterdam. The study requires 12 participants. Intervention: The treatment protocol consists of 35 weekly offered sessions, followed by 10 monthly booster sessions. A multiple baseline design will be used with baseline varying from 5 to 10 weeks, with weekly supportive sessions. After baseline, a 5-week exploration phase follows with weekly sessions during which current and past functioning, psychological symptoms, schema modes are explored, and information about the treatment will be given. Then 15 weekly sessions with cognitive-behavioral interventions and 15 weekly sessions with experiential interventions will be given. Finally, there will be a 10-month follow-up phase with monthly booster sessions. Participants are randomly assigned to baseline length, and respond weekly during treatment and monthly at follow-up on Belief Strength of negative core beliefs (by VAS), and fill out SMI, SCL-90 and SRS-A 7 times during screening procedure (i.e. before baseline), after baseline, after exploration, after cognitive and behavioral interventions, after experiential interventions, and after 5- and 10- month follow-up. The SCID-II will be administered during screening procedure (i.e. before baseline), at 5- and at 10-month follow-up. Main study parameters: The primary study parameter is negative core beliefs. Secondary study parameters include schema modes, personality disorder manifestations, psychological symptoms, and social interaction and communication. Discussion: To the best of author’s knowledge so far no study has been published on the application of schema mode focused interventions in adult patients with ASD and comorbid PD(s). This study offers the first systematic test of application of schema therapy for adults with ASD. The results of this study will provide initial evidence for the effectiveness of schema therapy in treating adults with both ASD and PD(s). The study intends to provide valuable information for future development and implementation of therapeutic interventions for adults with both ASD and PD(s).Keywords: adults, autism spectrum disorder, personality disorder, schema therapy
Procedia PDF Downloads 239462 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences
Authors: Susanna Asatryan
Abstract:
The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,
Procedia PDF Downloads 468461 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)
Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg
Abstract:
One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.Keywords: arsenic, fluoride, groundwater contamination, logistic regression
Procedia PDF Downloads 348460 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings
Authors: Abdulwakeel B. Raji
Abstract:
This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence
Procedia PDF Downloads 136459 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks
Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan
Abstract:
Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.
Procedia PDF Downloads 90458 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Eva Laryea, Clement Yeboah Authors
Abstract:
A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety
Procedia PDF Downloads 59457 Growing Pains and Organizational Development in Growing Enterprises: Conceptual Model and Its Empirical Examination
Authors: Maciej Czarnecki
Abstract:
Even though growth is one of the most important strategic objectives for many enterprises, we know relatively little about this phenomenon. This research contributes to broaden our knowledge of managerial consequences of growth. Scales for measuring organizational development and growing pains were developed. Conceptual model of connections among growth, organizational development, growing pains, selected development factors and financial performance were examined. The research process contained literature review, 20 interviews with managers, examination of 12 raters’ opinions, pilot research and 7 point Likert scale questionnaire research on 138 Polish enterprises employing 50-249 people which increased their employment at least by 50% within last three years. Factor analysis, Pearson product-moment correlation coefficient, student’s t-test and chi-squared test were used to develop scales. High Cronbach’s alpha coefficients were obtained. The verification of correlations among the constructs was carried out with factor correlations, multiple regressions and path analysis. When the enterprise grows, it is necessary to implement changes in its structure, management practices etc. (organizational development) to meet challenges of growing complexity. In this paper, organizational development was defined as internal changes aiming to improve the quality of existing or to introduce new elements in the areas of processes, organizational structure and culture, operational and management systems. Thus; H1: Growth has positive effects on organizational development. The main thesis of the research is that if organizational development does not catch up with growing complexity of growing enterprise, growing pains will arise (lower work comfort, conflicts, lack of control etc.). They will exert a negative influence on the financial performance and may result in serious organizational crisis or even bankruptcy. Thus; H2: Growth has positive effects on growing pains, H3: Organizational development has negative effects on growing pains, H4: Growing pains have negative effects on financial performance, H5: Organizational development has positive effects on financial performance. Scholars considered long lists of factors having potential influence on organizational development. The development of comprehensive model taking into account all possible variables may be beyond the capacity of any researcher or even statistical software used. After literature review, it was decided to increase the level of abstraction and to include following constructs in the conceptual model: organizational learning (OL), positive organization (PO) and high performance factors (HPF). H1a/b/c: OL/PO/HPF has positive effect on organizational development, H2a/b/c: OL/PO/HPF has negative effect on growing pains. The results of hypothesis testing: H1: partly supported, H1a/b/c: supported/not supported/supported, H2: not supported, H2a/b/c: not supported/partly supported/not supported, H3: supported, H4: partly supported, H5: supported. The research seems to be of a great value for both scholars and practitioners. It proved that OL and HPO matter for organizational development. Scales for measuring organizational development and growing pains were developed. Its main finding, though, is that organizational development is a good way of improving financial performance.Keywords: organizational development, growth, growing pains, financial performance
Procedia PDF Downloads 220456 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 122455 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review
Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos
Abstract:
Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation
Procedia PDF Downloads 153454 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties
Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi
Abstract:
Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling
Procedia PDF Downloads 69453 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling
Authors: S. Agarwal, A. Rani
Abstract:
Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters
Procedia PDF Downloads 127