Search results for: spiral surface
934 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel
Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro
Abstract:
The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas
Procedia PDF Downloads 314933 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 123932 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses
Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee
Abstract:
Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles
Procedia PDF Downloads 170931 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump
Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung
Abstract:
In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks
Procedia PDF Downloads 251930 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 287929 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System
Authors: K. Akutsu, S. Mori, T. Hanashima
Abstract:
Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS
Procedia PDF Downloads 189928 Successful Rehabilitation of Recalcitrant Knee Pain Due to Anterior Cruciate Ligament Injury Masked by Extensive Skin Graft: A Case Report
Authors: Geum Yeon Sim, Tyler Pigott, Julio Vasquez
Abstract:
A 38-year-old obese female with no apparent past medical history presented with left knee pain. Six months ago, she sustained a left knee dislocation in a motor vehicle accident that was managed with a skin graft over the left lower extremity without any reconstructive surgery. She developed persistent pain and stiffness in her left knee that worsened with walking and stair climbing. Examination revealed healed extensive skin graft over the left lower extremity, including the left knee. Palpation showed moderate tenderness along the superior border of the patella, exquisite tenderness over MCL, and mild tenderness on the tibial tuberosity. There was normal sensation, reflexes, and strength in her lower extremities. There was limited active and passive range of motion of her left knee during flexion. There was instability noted upon the valgus stress test of the left knee. Left knee magnetic resonance imaging showed high-grade (grade 2-3) injury of the proximal superficial fibers of the MCL and diffuse thickening and signal abnormality of the cruciate ligaments, as well as edema-like subchondral marrow signal change in the anterolateral aspect of the lateral femoral condyle weight-bearing surface. There was also notable extensive scarring and edema of the skin, subcutaneous soft tissues, and musculature surrounding the knee. The patient was managed with left knee immobilization for five months, which was complicated by limited knee flexion. Physical therapy consisting of quadriceps, hamstrings, gastrocnemius stretching and strengthening, range of motion exercises, scar/soft tissue mobilization, and gait training was given with marked improvement in pain and range of motion. The patient experienced a further reduction in pain as well as an improvement in function with home exercises consisting of continued strengthening and stretching.Keywords: ligamentous injury, trauma, rehabilitation, knee pain
Procedia PDF Downloads 117927 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus
Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi
Abstract:
In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax
Procedia PDF Downloads 176926 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 505925 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode
Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya
Abstract:
Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry
Procedia PDF Downloads 122924 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement
Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha
Abstract:
Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement
Procedia PDF Downloads 133923 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes
Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani
Abstract:
Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot
Procedia PDF Downloads 425922 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application
Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander
Abstract:
The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.Keywords: dopolymer, ε-decalactone, indomethacin, micelles
Procedia PDF Downloads 297921 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters
Authors: Tooba Aslam, Efthalia Chatzisymeon
Abstract:
UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment
Procedia PDF Downloads 81920 Development of Beeswax-Discharge Writing Material for Visually Impaired Persons
Authors: K. Doi, T. Nishimura, H. Fujimoto, T. Tanaka
Abstract:
It has been known that visually impaired persons have some problems in getting visual information. Therefore, information accessibility for the visually impaired persons is very important in a current information society. Some application software with read-aloud function for using personal computer and smartphone are getting more and more popular among visually impaired persons in the world. On the other hand, it is also very important for being able to learn how to read and write characters such as Braille and Visual character. Braille typewriter has been widely used in learning Braille. And also raised-line drawing kits as writing material has been used for decades for especially acquired visually impaired persons. However, there are some drawbacks such as the drawn line cannot be erased. Moreover, visibility of drawing lines is not so good for visually impaired with low vision. We had significant number of requests for developing new writing material for especially acquired visually impaired persons instead of raised-line drawing kits. For conducting development research of novel writing material, we could receive a research grant from ministry of health, labor and welfare in Japanese government. In this research, we developed writing material typed pens and pencils with Beeswax-discharge instead of conventional raised-line drawing kits. This writing material was equipped with cartridge heater for melting beeswax and its heat controller. When this pen users held down the pen tip on the regular paper such as fine paper and so on, the melted beeswax could be discharged from pen tip with valve structure. The beeswax was discharged at 100 gf of holding down force based on results of our previous trial study. The shape of pen tip was semispherical for becoming low friction between pen tip and surface of paper. We conducted one basic experiment to evaluate influence of the curvature of pen tip on ease to write. Concretely, the conditions of curvature was 0.15, 0.35, 0.50, 1.00 mm. The following four interval scales were used as indexes of subjective assessment during writing such as feeling of smooth motion of pen, feeling of comfortable writing, sense of security and feeling of writing fatigue. Ten subjects were asked to participate in this experiment. The results reveal that subjects could draw easily when the radius of the pen tip was 1.00 mm, and lines drawn with beeswax-discharge writing material were easy to perceive.Keywords: beeswax-discharge writing material, raised-line drawing kits, visually impaired persons, pen tip
Procedia PDF Downloads 312919 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities
Authors: Abdelghani Qadem
Abstract:
Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development
Procedia PDF Downloads 62918 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels
Authors: Virginia Martin Torrejon, Binjie Wu
Abstract:
Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels
Procedia PDF Downloads 107917 Systematic Analysis of Logistics Location Search Methods under Aspects of Sustainability
Authors: Markus Pajones, Theresa Steiner, Matthias Neubauer
Abstract:
Selecting a logistics location is vital for logistics providers, food retailing and other trading companies since the selection poses an essential factor for economic success. Therefore various location search methods like cost-benefit analysis and others are well known and under usage. The development of a logistics location can be related to considerable negative effects for the eco system such as sealing the surface, wrecking of biodiversity or CO2 and noise emissions generated by freight and commuting traffic. The increasing importance of sustainability demands for taking an informed decision when selecting a logistics location for the future. Sustainability considers economic, ecologic and social aspects which should be equally integrated in the process of location search. Objectives of this paper are to define various methods which support the selection of sustainable logistics locations and to generate knowledge about the suitability, assets and limitations of the methods within the selection process. This paper investigates the role of economical, ecological and social aspects when searching for new logistics locations. Thereby, related work targeted towards location search is analyzed with respect to encoded sustainability aspects. In addition, this research aims to gain knowledge on how to include aspects of sustainability and take an informed decision when searching for a logistics location. As a result, a decomposition of the various location search methods in there components leads to a comparative analysis in form of a matrix. The comparison within a matrix enables a transparent overview about the mentioned assets and limitations of the methods and their suitability for selecting sustainable logistics locations. A further result is to generate knowledge on how to combine the separate methods to a new method for a more efficient selection of logistics locations in the context of sustainability. Future work will especially investigate the above mentioned combination of various location search methods. The objective is to develop an innovative instrument, which supports the search for logistics locations with a focus on a balanced sustainability (economy, ecology, social). Because of an ideal selection of logistics locations, induced traffic should be reduced and a mode shift to rail and public transport should be facilitated.Keywords: commuting traffic, freight traffic, logistics location search, location search method
Procedia PDF Downloads 323916 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser
Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay
Abstract:
The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction
Procedia PDF Downloads 299915 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation
Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier
Abstract:
Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet
Procedia PDF Downloads 274914 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands
Authors: Hongtao Zhu, Dezhi Sun
Abstract:
Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite
Procedia PDF Downloads 256913 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)
Procedia PDF Downloads 447912 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite
Authors: Chen Chuanzhi, Guo Yunyun
Abstract:
The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna
Procedia PDF Downloads 166911 Evaluation of Different Food Baits by Using Kill Traps for the Control of Lesser Bandicoot Rat (Bandicota bengalensis) in Field Crops of Pothwar Plateau, Pakistan
Authors: Nadeem Munawar, Iftikhar Hussain, Tariq Mahmood
Abstract:
The lesser bandicoot rat (Bandicota bengalensis) is widely distributed and a serious agricultural pest in Pakistan. It has wide adaptation with rice-wheat-sugarcane cropping systems of Punjab, Sindh and Khyber Pakhtunkhwa and wheat-groundnut cropping system of Pothwar area, thus inflicting heavy losses to these crops. Comparative efficacies of four food baits (onion, guava, potato and peanut butter smeared bread/Chapatti) were tested in multiple feeding tests for kill trapping of this rat species in the Pothwar Plateau between October 2013 to July 2014 at the sowing, tilling, flowering and maturity stages of wheat, groundnut and millet crops. The results revealed that guava was the most preferred bait as compared to the rest of three, presumably due to particular taste and smell of the guava. The relative efficacies of all four tested baits guava also scoring the highest trapping success of 16.94 ± 1.42 percent, followed by peanut butter, potato, and onion with trapping successes of 10.52 ± 1.30, 7.82 ± 1.21 and 4.5 ± 1.10 percent, respectively. In various crop stages and season-wise the highest trapping success was achieved at maturity stages of the crops, presumably due to higher surface activity of the rat because of favorable climatic conditions, good shelter, and food abundance. Moreover, the maturity stage of wheat crop coincided with spring breeding season and maturity stages of millet and groundnut match with monsoon/autumn breeding peak of the lesser bandicoot rat in Pothwar area. The preferred order among four baits tested was guava > peanut butter > potato > onion. The study recommends that the farmers should periodically carry out rodent trapping at the beginning of each crop season and during non-breeding seasons of this rodent pest when the populations are low in numbers and restricted under crop boundary vegetation, particularly during very hot and cold months.Keywords: Bandicota bengalensis, efficacy, food baits, Pothwar
Procedia PDF Downloads 269910 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma
Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral
Abstract:
Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial
Procedia PDF Downloads 251909 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 222908 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia
Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka
Abstract:
There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.Keywords: elevation, forest cover, rainfall, slope
Procedia PDF Downloads 557907 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes
Authors: Imad Khan, Imran Shafi, Sarmad Farooq
Abstract:
Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes
Procedia PDF Downloads 116906 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh
Authors: Zahid Khalil, Saad Ul Haque, Asif Khan
Abstract:
Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).Keywords: Remote sensing, GIS, AHP, RWH
Procedia PDF Downloads 391905 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 348