Search results for: distance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5868

Search results for: distance training

108 Maternal Obesity in Nigeria: An Exploratory Study

Authors: Ojochenemi J. Onubi, Debbi Marais, Lorna Aucott, Friday Okonofua, Amudha Poobalan

Abstract:

Background: Obesity is a worldwide epidemic with major health and economic consequences. Pregnancy is a trigger point for the development of obesity, and maternal obesity is associated with significant adverse effects in the mother and child. Nigeria is experiencing a double burden of under- and over-nutrition with rising levels of obesity particularly in women. However, there is scarcity of data on maternal obesity in Nigeria and other African countries. Aims and Objectives: This project aimed at identifying crucial components of potential interventions for maternal obesity in Nigeria. The objectives were to assess the prevalence, effects, and distribution of maternal obesity; knowledge, attitude and practice (KAP) of pregnant women and maternal healthcare providers; and identify existing interventions for maternal obesity in Nigeria. Methodology: A systematic review and meta-analysis were initially conducted to appraise the existing literature on maternal obesity in Africa. Following this, a quantitative questionnaire survey of the KAP of pregnant women and a qualitative interview study of the KAP of Health Care Workers (HCW) were conducted in seven secondary and tertiary hospitals across Nigeria. Quantitative data was analysed using SPSS statistical software, while thematic analysis was conducted for qualitative data. Results: Twenty-nine studies included in the systematic review showed significant prevalence, socio-demographic associations, and adverse effects of maternal obesity on labour, maternal, and child outcomes in Africa. The questionnaire survey of 435 mothers revealed a maternal obesity prevalence of 17.9% among mothers who registered for antenatal care in the first trimester. The mothers received nutrition information from different sources and had insufficient knowledge of their own weight category or recommended Gestational Weight Gain (GWG), causes, complications, and safe ways to manage maternal obesity. However, majority of the mothers were of the opinion that excess GWG is avoided in pregnancy and some practiced weight management (diet and exercise) during pregnancy. For the qualitative study, four main themes were identified: ‘Concerns about obesity in pregnancy’, ‘Barriers to care for obese pregnant women’, ‘Practice of care for obese pregnant women’, and ‘Improving care for obese pregnant women’. HCW expressed concerns about rising levels of maternal obesity, lack of guidelines for the management of obese pregnant women and worries about unintended consequences of antenatal interventions. ‘Barriers’ included lack of contact with obese women before pregnancy, late registration for antenatal care, and perceived maternal barriers such as socio-cultural beliefs of mothers and poverty. ‘Practice’ included anticipatory care and screening for possible complications, general nutrition education during antenatal care and interdisciplinary care for mothers with complications. HCW offered suggestions on improving care for obese women including timing, type, and settings of interventions; and the need for involvement of other stake holders in caring for obese pregnant women. Conclusions: Culturally adaptable/sensitive interventions should be developed for the management of obese pregnant women in Africa. Education and training of mothers and health care workers, and provision of guidelines are some of the components of potential interventions in Nigeria.

Keywords: Africa, maternal, obesity, pregnancy

Procedia PDF Downloads 271
107 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 281
106 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 122
105 Providing Leadership in Nigerian University Education Research Enterprise: The Imperative of Research Ethics

Authors: O. O. Oku, K. S. Jerry-Alagbaoso

Abstract:

It is universally acknowledged that the primary function of universities is the generation and dissemination of knowledge. This mission is pursued through the research component of the university programme especially at the post-graduate level. The senior academic staff teach, supervise and provide general academic leadership to post-graduate students who are expected to carry out research leading to the presentation of dissertation as requirement for the award of doctoral degree in their various disciplines. Carrying out the research enterprises involves a lot of corroboration among individuals and communities. The need to safeguard the interest of everyone involved in the enterprise makes the development of ethical standard in research imperative. Ensuring the development and effective application of such ethical standard falls within the leadership role of the vice –chancellors, Deans of post-graduate schools/ faculties, Heads of Departments and supervisors. It is the relevance and application of such ethical standard in Nigerian university research efforts that this study discussed. The study adopted the descriptive research design. A researcher-made 4 point rating scale was used to elicit information from the post-graduate dissertation supervisors sampled from one university each from the six geo-political zones in Nigeria using the purposive sampling technique. The data collected was analysed using the mean score and standard deviation. The findings of the study include among others that there are several cases of unethical practices by Ph.D dissertation students in Nigerian universities. Prominent among these include duplicating research topics, making unauthorized copies of data paper or computer programme, failing to acknowledge contributions of relevant people and authors, rigging an experiment to prempt the result among others. Some of the causes of the unethical practices according to the respondents include inadequate funding of universities resulting in inadequate remuneration for university teachers, inadequacy of equipment and infrastructures, poor supervision of Ph.D students,’ poverty on the side of the student researchers and non-application of sanctions on violators. Improved funding of the Nigerian universities system with emphasis on both staff and student research efforts, admitting academic oriented students into the Ph.D programme and ensuring the application of appropriate sanctions in cases of unethical conduct in research featured prominently in the needed leadership imperatives. Based on the findings of the study, the researchers recommend the development of university research policies that is closely tied to each university’s strategic plan. Such plan should explain the research focus that will attract more funding and direct students interest towards it without violating the principle of academic freedom. The plan should also incorporate the establishment of a research administration office to provide the necessary link between the students and funding agencies and also organise training for supervisors on leadership activities expected of them while educating students on the processes involved in carrying out a qualitative and acceptable research study. Such exercise should include the ethical principles and guidelines that comprise all parts of research from research topic through the literature review to the design and the truthful reporting of results.

Keywords: academic leadership, ethical standards, research stakeholders, research enterprise

Procedia PDF Downloads 247
104 Disaster Preparedness for People with Disabilities through EPPO's Educational Awareness Initiative

Authors: A. Kourou, A. Ioakeimidou, E. Pelli, M. Panoutsopoulou, V. Abramea

Abstract:

Worldwide there is a growing recognition that education is a critical component of any disaster impacts reduction effort and a great challenge too. Given this challenge, a broad range of awareness raising projects at all levels are implemented and are continuously evaluated by Earthquake Planning and Protection Organization (EPPO). This paper presents an overview of EPPO educational initiative (seminars, lectures, workshops, campaigns and educational material) and its evaluation results. The abovementioned initiative is focused to aware the public, train teachers and civil protection staff, inform students and educate people with disabilities on subjects related to earthquake reduction issues. The better understating of how human activity can link to disaster and what can be done at the individual, family or workplace level to contribute to seismic reduction are the main issues of EPPO projects. Survey results revealed that a high percentage of teachers (included the ones of special schools) from all over the country have taken the appropriate preparedness measures at schools. On the other hand, the implementation of earthquake preparedness measures at various workplaces (kindergartens, banks, utilities etc.) has still significant room for improvement. Results show that the employees in banks and public utilities have substantially higher rates in preventive and preparedness actions in their workplaces than workers in kindergartens and other workplaces. One of the EPPO educational priorities is to enhance earthquake preparedness of people with disabilities. Booklets, posters and applications have been created with the financial support of the Council of Europe, addressed to people who have mobility impairments, learning difficulties or cognitive disability (ή intellectual disabilities). Part of the educational material was developed using the «easy-to-read» method and Makaton language program with the collaboration of experts on special needs education and teams of people with cognitive disability. Furthermore, earthquake safety seminars and earthquake drills have been implemented in order to develop children’s, parents’ and teachers abilities and skills on earthquake impacts reduction. To enhance the abovementioned efforts, EPPO is a partner at prevention and preparedness projects supported by EU Civil Protection Financial Instrument. One of them is E-PreS’ project (Monitoring and Evaluation of Natural Hazard Preparedness at School Environment). The main objectives of E-PreS project are: 1) to create smart tools which define, simulate and evaluate drills procedure at schools, centers of vocational training of people with disabilities or other workplaces, and 2) to involve students or adults with disabilities in the E-PreS system evacuation procedure in case of earthquake, flood, or volcanic occurrence. Two other EU projects (RACCE educational kit and EVANDE educational platform) are also with the aim of contributing to raising awareness among people with disabilities, students, teachers, volunteers etc. It is worth mentioning that even though in Greece many efforts have been done till now to build awareness towards earthquakes and establish preparedness status for prospective earthquakes, there are still actions to be taken.

Keywords: earthquake, emergency plans, E-PreS project, people with disabilities, special needs education

Procedia PDF Downloads 268
103 Lessons Learnt from Industry: Achieving Net Gain Outcomes for Biodiversity

Authors: Julia Baker

Abstract:

Development plays a major role in stopping biodiversity loss. But the ‘silo species’ protection of legislation (where certain species are protected while many are not) means that development can be ‘legally compliant’ and result in biodiversity loss. ‘Net Gain’ (NG) policies can help overcome this by making it an absolute requirement that development causes no overall loss of biodiversity and brings a benefit. However, offsetting biodiversity losses in one location with gains elsewhere is controversial because people suspect ‘offsetting’ to be an easy way for developers to buy their way out of conservation requirements. Yet the good practice principles (GPP) of offsetting provide several advantages over existing legislation for protecting biodiversity from development. This presentation describes the learning from implementing NG approaches based on GPP. It regards major upgrades of the UK’s transport networks, which involved removing vegetation in order to construct and safely operate new infrastructure. While low-lying habitats were retained, trees and other habitats disrupting the running or safety of transport networks could not. Consequently, achieving NG within the transport corridor was not possible and offsetting was required. The first ‘lessons learnt’ were on obtaining a commitment from business leaders to go beyond legislative requirements and deliver NG, and on the institutional change necessary to embed GPP within daily operations. These issues can only be addressed when the challenges that biodiversity poses for business are overcome. These challenges included: biodiversity cannot be measured easily unlike other sustainability factors like carbon and water that have metrics for target-setting and measuring progress; and, the mindset that biodiversity costs money and does not generate cash in return, which is the opposite of carbon or waste for example, where people can see how ‘sustainability’ actions save money. The challenges were overcome by presenting the GPP of NG as a cost-efficient solution to specific, critical risks facing the business that also boost industry recognition, and by using government-issued NG metrics to develop business-specific toolkits charting their NG progress whilst ensuring that NG decision-making was based on rich ecological data. An institutional change was best achieved by supporting, mentoring and training sustainability/environmental managers for these ‘frontline’ staff to embed GPP within the business. The second learning was from implementing the GPP where business partnered with local governments, wildlife groups and land owners to support their priorities for nature conservation, and where these partners had a say in decisions about where and how best to achieve NG. From this inclusive approach, offsetting contributed towards conservation priorities when all collaborated to manage trade-offs between: -Delivering ecologically equivalent offsets or compensating for losses of one type of biodiversity by providing another. -Achieving NG locally to the development whilst contributing towards national conservation priorities through landscape-level planning. -Not just protecting the extent and condition of existing biodiversity but ‘doing more’. -The multi-sector collaborations identified practical, workable solutions to ‘in perpetuity’. But key was strengthening linkages between biodiversity measures implemented for development and conservation work undertaken by local organizations so that developers support NG initiatives that really count.

Keywords: biodiversity offsetting, development, nature conservation planning, net gain

Procedia PDF Downloads 198
102 A Randomised Simulation Study to Assess the Impact of a Focussed Crew Resource Management Course on UK Medical Students

Authors: S. MacDougall-Davis, S. Wysling, R. Willmore

Abstract:

Background: The application of good non-technical skills, also known as crew resource management (CRM), is central to the delivery of safe, effective healthcare. The authors have been running remote trauma courses for over 10 years, primarily focussing on developing participants’ CRM in time-critical, high-stress clinical situations. The course has undergone an iterative process over the past 10 years. We employ a number of experiential learning techniques for improving CRM, including small group workshops, military command tasks, high fidelity simulations with reflective debriefs, and a ‘flipped classroom’, where participants are asked to create their own simulations and assess and debrief their colleagues’ CRM. We created a randomised simulation study to assess the impact of our course on UK medical students’ CRM, both at an individual and a teams level. Methods: Sixteen students took part. Four clinical scenarios were devised, designed to be of similar urgency and complexity. Professional moulage effects and experienced clinical actors were used to increase fidelity and to further simulate high-stress environments. Participants were block randomised into teams of 4; each team was randomly assigned to one pre-course simulation. They then underwent our 5 day remote trauma CRM course. Post-course, students were re-randomised into four new teams; each was randomly assigned to a post-course simulation. All simulations were videoed. The footage was reviewed by two independent CRM-trained assessors, who were blinded to the before/after the status of the simulations. Assessors used the internationally validated team emergency assessment measure (TEAM) to evaluate key areas of team performance, as well as a global outcome rating. Prior to the study, assessors had scored two unrelated scenarios using the same assessment tool, demonstrating 89% concordance. Participants also completed pre- and post-course questionnaires. Likert scales were used to rate individuals’ perceived NTS ability and their confidence to work in a team in time-critical, high-stress situations. Results: Following participation in the course, a significant improvement in CRM was observed in all areas of team performance. Furthermore, the global outcome rating for team performance was markedly improved (40-70%; mean 55%), thus demonstrating an impact at Level 4 of Kirkpatrick’s hierarchy. At an individual level, participants’ self-perceived CRM improved markedly after the course (35-70% absolute improvement; mean 55%), as did their confidence to work in a team in high-stress situations. Conclusion: Our study demonstrates that with a short, cost-effective course, using easily reproducible teaching sessions, it is possible to significantly improve participants’ CRM skills, both at an individual and, perhaps more importantly, at a teams level. The successful functioning of multi-disciplinary teams is vital in a healthcare setting, particularly in high-stress, time-critical situations. Good CRM is of paramount importance in these scenarios. The authors believe that these concepts should be introduced from the earliest stages of medical education, thus promoting a culture of effective CRM and embedding an early appreciation of the importance of these skills in enabling safe and effective healthcare.

Keywords: crew resource management, non-technical skills, training, simulation

Procedia PDF Downloads 140
101 Concept Mapping to Reach Consensus on an Antibiotic Smart Use Strategy Model to Promote and Support Appropriate Antibiotic Prescribing in a Hospital, Thailand

Authors: Phenphak Horadee, Rodchares Hanrinth, Saithip Suttiruksa

Abstract:

Inappropriate use of antibiotics has happened in several hospitals, Thailand. Drug use evaluation (DUE) is one strategy to overcome this difficulty. However, most community hospitals still encounter incomplete evaluation resulting overuse of antibiotics with high cost. Consequently, drug-resistant bacteria have been rising due to inappropriate antibiotic use. The aim of this study was to involve stakeholders in conceptualizing, developing, and prioritizing a feasible intervention strategy to promote and support appropriate antibiotic prescribing in a community hospital, Thailand. Study antibiotics included four antibiotics such as Meropenem, Piperacillin/tazobactam, Amoxicillin/clavulanic acid, and Vancomycin. The study was conducted for the 1-year period between March 1, 2018, and March 31, 2019, in a community hospital in the northeastern part of Thailand. Concept mapping was used in a purposive sample, including doctors (one was an administrator), pharmacists, and nurses who involving drug use evaluation of antibiotics. In-depth interviews for each participant and survey research were conducted to seek the problems for inappropriate use of antibiotics based on drug use evaluation system. Seventy-seven percent of DUE reported appropriate antibiotic prescribing, which still did not reach the goal of 80 percent appropriateness. Meropenem led other antibiotics for inappropriate prescribing. The causes of the unsuccessful DUE program were classified into three themes such as personnel, lack of public relation and communication, and unsupported policy and impractical regulations. During the first meeting, stakeholders (n = 21) expressed the generation of interventions. During the second meeting, participants who were almost the same group of people in the first meeting (n = 21) were requested to independently rate the feasibility and importance of each idea and to categorize them into relevant clusters to facilitate multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the idealist, cluster list, point map, point rating map, cluster map, and cluster rating map. All of these were distributed to participants (n = 21) during the third meeting to reach consensus on an intervention model. The final proposed intervention strategy included 29 feasible and crucial interventions in seven clusters: development of information technology system, establishing policy and taking it into the action plan, proactive public relations of the policy, action plan and workflow, in cooperation of multidisciplinary teams in drug use evaluation, work review and evaluation with performance reporting, promoting and developing professional and clinical skill for staff with training programs, and developing practical drug use evaluation guideline for antibiotics. These interventions are relevant and fit to several intervention strategies for antibiotic stewardship program in many international organizations such as participation of the multidisciplinary team, developing information technology to support antibiotic smart use, and communication. These interventions were prioritized for implementation over a 1-year period. Once the possibility of each activity or plan is set up, the proposed program could be applied and integrated into hospital policy after evaluating plans. Effectiveness of each intervention could be promoted to other community hospitals to promote and support antibiotic smart use.

Keywords: antibiotic, concept mapping, drug use evaluation, multidisciplinary teams

Procedia PDF Downloads 124
100 Promoting Physical Activity through Urban Active Environments: Learning from Practice and Policy Implementation in the EU Space Project

Authors: Rosina U. Ndukwe, Diane Crone, Nick Cavill

Abstract:

Active transport (i.e. walking to school, cycle to work schemes etc.) is an effective approach with multiple social and environmental benefits for transforming urban environments into active urban environments. Although walking and cycling often remain on the margins of urban planning and infrastructure, there are new approaches emerging, along with policy intervention relevant for the creation of sustainable urban active environments conductive to active travel, increasing physical activity levels of involved communities and supporting social inclusion through more active participation. SPAcE - Supporting Policy and Action for Active Environments is a 3 year Erasmus+ project that aims to integrate active transport programmes into public policy across the EU. SPAcE focuses on cities/towns with recorded low physical activity levels to support the development of active environments in 5 sites: Latvia [Tukums], Italy [Palermo], Romania [Brasov], Spain [Castilla-La Mancha] and Greece [Trikala]. The first part of the project involved a review of good practice including case studies from across the EU and project partner countries. This has resulted in the first output from the project, an evidence of good practice summary with case study examples. In the second part of the project, working groups across the 5 sites have carried out co-production to develop Urban Active Environments (UActivE) Action Plans aimed at influencing policy and practice for increasing physical activity primarily through the use of cycling and walking. Action plans are based on international evidence and guidance for healthy urban planning. Remaining project partners include Universities (Gloucestershire, Oxford, Zurich, Thessaly) and Fit for Life programme (National physical activity promotion program, Finland) who provide support and advice incorporating current evidence, healthy urban planning and mentoring. Cooperation and co-production with public health professionals, local government officers, education authorities and transport agencies has been a key approach of the project. The third stage of the project has involved training partners in the WHO HEAT tool to support the implementation of the Action Plans. Project results show how multi-agency, transnational collaboration can produce real-life Action Plans in five EU countries, based on published evidence, real-life experience, consultation and collaborative working with other organisations across the EU. Learning from the processes adopted within this project will demonstrate how public health, local government and transport agencies across the EU, can work together to create healthy environments that have the aim of facilitating active behaviour, even in times of constrained public budgets. The SPAcE project has captured both the challenges and solutions for increasing population physical activity levels, health and wellness in urban spaces and translating evidence into policy and practice ensuring innovation at policy level. Funding acknowledgment: SPAcE (www.activeenvironments.eu) is co-funded by the Sport action of the ERASMUS+ programme.

Keywords: action plans, active transport, SPAcE, UActivE urban active environments, walking and cycling

Procedia PDF Downloads 266
99 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 308
98 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application

Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra

Abstract:

Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.

Keywords: mobile app, doctor induction, medical education, acute medicine

Procedia PDF Downloads 91
97 Organisational Mindfulness Case Study: A 6-Week Corporate Mindfulness Programme Significantly Enhances Organisational Well-Being

Authors: Dana Zelicha

Abstract:

A 6-week mindfulness programme was launched to improve the well being and performance of 20 managers (including the supervisor) of an international corporation in London. A unique assessment methodology was customised to the organisation’s needs, measuring four parameters: prioritising skills, listening skills, mindfulness levels and happiness levels. All parameters showed significant improvements (p < 0.01) post intervention, with a remarkable increase in listening skills and mindfulness levels. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home and the implementation of these tools beyond the scope of the intervention. This study has offered an innovative approach to enforce home engagement levels, which yielded promising results. The programme launched with a 2-day introduction intervention, which was followed by a 6-week training course (1 day a week; 2 hours each). Participants learned all basic principles of mindfulness such as mindfulness meditations, Mindfulness Based Stress Reduction (MBSR) techniques and Mindfulness Based Cognitive Therapy (MBCT) practices to incorporate into their professional and personal lives. The programme contained experiential mindfulness meditations and innovative mindfulness tools (OWBA-MT) created by OWBA - The Well Being Agency. Exercises included Mindful Meetings, Unitasking and Mindful Feedback. All sessions concluded with guided discussions and group reflections. One fundamental element of this programme was engagement level outside of the workshop. In the office, participants connected with a mindfulness buddy - a team member in the group with whom they could find support throughout the programme. At home, participants completed online daily mindfulness forms that varied according to weekly themes. These customised forms gave participants the opportunity to reflect on whether they made time for daily mindfulness practice, and to facilitate a sense of continuity and responsibility. At the end of the programme, the most engaged team member was crowned the ‘mindful maven’ and received a special gift. The four parameters were measured using online self-reported questionnaires, including the Listening Skills Inventory (LSI), Mindfulness Attention Awareness Scale (MAAS), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). Pre-intervention questionnaires were collected at the start of the programme, and post-intervention data was collected 4-weeks following completion. Quantitative analysis using paired T-tests of means showed significant improvements, with a 23% increase in listening skills, a 22% improvement in mindfulness levels, a 12% increase in prioritising skills, and an 11% improvement in happiness levels. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the mindfulness programme substantially impacted the team. These results suggest that 6-week mindfulness programmes can improve employees’ capacities to listen and work well with others, to effectively manage time and to experience enhanced satisfaction both at work and in life. Limitations noteworthy to consider include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.

Keywords: corporate mindfulness, listening skills, organisational well being, prioritising skills, mindful leadership

Procedia PDF Downloads 274
96 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 63
95 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 74
94 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.

Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease

Procedia PDF Downloads 279
93 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 98
92 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 187
91 Construction Engineering and Cocoa Agriculture: A Synergistic Approach for Improved Livelihoods of Farmers

Authors: Felix Darko-Amoah, Daniel Acquah

Abstract:

In contemporary ecosystems for developing countries like Ghana, the need to explore innovative solutions for sustainable livelihoods of farmers is more important than ever. With Ghana’s population growing steadily and the demand for food, fiber and shelter increasing, it is imperative that the construction industry and agriculture come together to address the challenges faced by farmers in the country. In order to enhance the livelihoods of cocoa farmers in Ghana, this paper provides an innovative strategy that aims to integrate the areas of civil engineering and cash crop agriculture. This study focuses on cocoa cultivation in poorer nations, where farmers confront a variety of difficulties include restricted access to financing, subpar infrastructure, and insufficient support services. We seek to improve farmers' access to financing, improve infrastructure, and provide support services that are essential to their success by combining the fields of building engineering and cocoa production. The findings of the study are beneficial to cocoa producers, community extension agents, and construction engineers. In order to accomplish our objectives, we conducted 307 of field investigations in particular cocoa growing communities in the Western Region of Ghana. Several studies have shown that there is a lack of adequate infrastructure and financing, leading to low yields, subpar beans, and low farmer profitability in developing nations like Ghana. Our goal is to give farmers access to better infrastructure, better financing, and support services that are crucial to their success through the fusion of construction engineering and cocoa production. Based on data gathered from the field investigations, the results show that the employment of appropriate technology and methods for developing structures, roads, and other infrastructure in rural regions is one of the essential components of this strategy. For instance, we find that using affordable, environmentally friendly materials like bamboo, rammed earth, and mud bricks can assist to cut expenditures while also protecting the environment. By applying simple relational techniques to the data gathered, the results also show that construction engineers are crucial in planning and building infrastructure that is appropriate for the local environment and circumstances and resilient to natural disasters like floods. Thus, the convergence of construction engineering and cash crop cultivation is another crucial component of the agriculture-construction interplay. For instance, farmers can receive financial assistance to buy essential inputs, such as seeds, fertilizer, and tools, as well as training in proper farming methods. Moreover, extension services can be offered to assist farmers in marketing their crops and enhancing their livelihoods and revenue. In conclusion, our analysis of responses from the 307 participants depicts that the combination of construction engineering and cash crop agriculture offers an innovative approach to improving farmers' livelihoods in cocoa farming communities in Ghana. In conclusion, by inculcating the findings of this study into core decision-making, policymakers can help farmers build sustainable and profitable livelihoods by addressing challenges such as limited access to financing, poor infrastructure, and inadequate support services.

Keywords: cocoa agriculture, construction engineering, farm buildings and equipment, improved livelihoods of farmers

Procedia PDF Downloads 96
90 Enhancing Seismic Resilience in Urban Environments

Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino

Abstract:

Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.

Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability

Procedia PDF Downloads 72
89 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong

Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak

Abstract:

Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.

Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls

Procedia PDF Downloads 119
88 Advances and Challenges in Assessing Students’ Learning Competencies in 21st Century Higher Education

Authors: O. Zlatkin-Troitschanskaia, J. Fischer, C. Lautenbach, H. A. Pant

Abstract:

In 21st century higher education (HE), the diversity among students has increased in recent years due to the internationalization and higher mobility. Offering and providing equal and fair opportunities based on students’ individual skills and abilities instead of their social or cultural background is one of the major aims of HE. In this context, valid, objective and transparent assessments of students’ preconditions and academic competencies in HE are required. However, as analyses of the current states of research and practice show, a substantial research gap on assessment practices in HE still exists, calling for the development of effective solutions. These demands lead to significant conceptual and methodological challenges. Funded by the German Federal Ministry of Education and Research, the research program 'Modeling and Measuring Competencies in Higher Education – Validation and Methodological Challenges' (KoKoHs) focusses on addressing these challenges in HE assessment practice by modeling and validating objective test instruments. Including 16 cross-university collaborative projects, the German-wide research program contributes to bridging the research gap in current assessment research and practice by concentrating on practical and policy-related challenges of assessment in HE. In this paper, we present a differentiated overview of existing assessments of HE at the national and international level. Based on the state of research, we describe the theoretical and conceptual framework of the KoKoHs Program as well as results of the validation studies, including their key outcomes. More precisely, this includes an insight into more than 40 developed assessments covering a broad range of transparent and objective methods for validly measuring domain-specific and generic knowledge and skills for five major study areas (Economics, Social Science, Teacher Education, Medicine and Psychology). Computer-, video- and simulation-based instruments have been applied and validated to measure over 20,000 students at the beginning, middle and end of their (bachelor and master) studies at more than 300 HE institutions throughout Germany or during their practical training phase, traineeship or occupation. Focussing on the validity of the assessments, all test instruments have been analyzed comprehensively, using a broad range of methods and observing the validity criteria of the Standards for Psychological and Educational Testing developed by the American Educational Research Association, the American Economic Association and the National Council on Measurement. The results of the developed assessments presented in this paper, provide valuable outcomes to predict students’ skills and abilities at the beginning and the end of their studies as well as their learning development and performance. This allows for a differentiated view of the diversity among students. Based on the given research results practical implications and recommendations are formulated. In particular, appropriate and effective learning opportunities for students can be created to support the learning development of students, promote their individual potential and reduce knowledge and skill gaps. Overall, the presented research on competency assessment is highly relevant to national and international HE practice.

Keywords: 21st century skills, academic competencies, innovative assessments, KoKoHs

Procedia PDF Downloads 146
87 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era

Authors: Peggy M. Randon, Lisa Randon

Abstract:

Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.

Keywords: childhood, schizophrenia, policy, United, States, health, disparities

Procedia PDF Downloads 83
86 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China

Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang

Abstract:

Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.

Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle

Procedia PDF Downloads 285
85 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 137
84 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh

Authors: Md. Nuru Miah, A. F. M. Akhter Uddin

Abstract:

Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.

Keywords: aloe vera, herbs and shrubs, market, interventions

Procedia PDF Downloads 99
83 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 283
82 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 66
81 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative

Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi

Abstract:

India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.

Keywords: integrated service hub, India, oil gas, offshore supply base

Procedia PDF Downloads 154
80 Understanding the Perceived Barriers and Facilitators to Exercise Participation in the Workplace

Authors: Jayden R. Hunter, Brett A. Gordon, Stephen R. Bird, Amanda C. Benson

Abstract:

The World Health Organisation recognises the workplace as an important setting for exercise promotion, with potential benefits including improved employee health and fitness, and reduced worker absenteeism and presenteeism. Despite these potential benefits to both employee and employer, there is a lack of evidence supporting the long-term effectiveness of workplace exercise programs. There is, therefore, a need for better-informed programs that cater to employee exercise preferences. Specifically, workplace exercise programs should address any time, motivation, internal and external barriers to participation reported by sub-groups of employees. This study sought to compare exercise participation to perceived barriers and facilitators to workplace exercise engagement of university employees. This information is needed to design and implement wider-reaching programs aiming to maximise long-term employee exercise adherence and subsequent health, fitness and productivity benefits. An online survey was advertised at an Australian university with the potential to reach 3,104 full-time employees. Along with exercise participation (International physical activity questionnaire) and behaviour (stage of behaviour change in relation to physical activity questionnaire), perceived barriers (corporate exercise barriers scale) and facilitators to workplace exercise participation were identified. The survey response rate was 8.1% (252 full-time employees; 95% white-collar; 60% female; 79.4% aged 30–59 years; 57% professional and 38% academic). Most employees reported meeting (43.7%) or exceeding (42.9%) exercise guidelines over the previous week (i.e. ⩾30 min of moderate-intensity exercise on most days or ⩾ 25 min of vigorous-intensity exercise on at least three days per week). Reported exercise behaviour over the previous six months showed that 64.7% of employees were in maintenance, 8.3% were in action, 10.9% were in preparation, 12.4% were in contemplation, and 3.8% were in the pre-contemplation stage of change. Perceived barriers towards workplace exercise participation were significantly higher in employees not attaining weekly exercise guidelines compared to employees meeting or exceeding guidelines, including a lack of time or reduced motivation (p < 0.001; partial eta squared = 0.24 (large effect)), exercise attitude (p < 0.05; partial eta squared = 0.04 (small effect)), internal (p < 0.01; partial eta squared = 0.10 (moderate effect)) and external (p < 0.01; partial eta squared = 0.06 (moderate effect)) barriers. The most frequently reported exercise facilitators were personal training (particularly for insufficiently active employees; 33%) and group exercise classes (20%). The most frequently cited preferred modes of exercise were walking (70%), swimming (50%), gym (48%), and cycling (45%). In conclusion, providing additional means of support such as individualised gym, swimming and cycling programs with personal supervision and guidance may be particularly useful for employees not meeting recommended moderate-vigorous volumes of exercise, to help overcome reported exercise barriers in order to improve participation, health, and fitness. While individual biopsychosocial factors should be considered when making recommendations for interventions, the specific barriers and facilitators to workplace exercise participation identified by this study can inform the development of workplace exercise programs aiming to broaden employee engagement and promote greater ongoing exercise adherence. This is especially important for the uptake of less active employees who perceive greater barriers to workplace exercise participation than their more active colleagues.

Keywords: exercise barriers, exercise facilitators, physical activity, workplace health

Procedia PDF Downloads 152
79 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 68