Search results for: efficiency test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15172

Search results for: efficiency test

9502 Revolutionary Solutions for Modeling and Visualization of Complex Software Systems

Authors: Jay Xiong, Li Lin

Abstract:

Existing software modeling and visualization approaches using UML are outdated, which are outcomes of reductionism and the superposition principle that the whole of a system is the sum of its parts, so that with them all tasks of software modeling and visualization are performed linearly, partially, and locally. This paper introduces revolutionary solutions for modeling and visualization of complex software systems, which make complex software systems much easy to understand, test, and maintain. The solutions are based on complexity science, offering holistic, automatic, dynamic, virtual, and executable approaches about thousand times more efficient than the traditional ones.

Keywords: complex systems, software maintenance, software modeling, software visualization

Procedia PDF Downloads 401
9501 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System

Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng

Abstract:

This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.

Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator

Procedia PDF Downloads 519
9500 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 212
9499 The Effectiveness of Virtual Reality Training for Improving Interpersonal Communication Skills: An Experimental Study

Authors: Twinkle Sara Joseph

Abstract:

Virtual reality technology has emerged as a revolutionary power that can transform the education sector in many ways. VR environments can break the boundaries of the traditional classroom setting by immersing the students in realistic 3D environments where they can interact with virtual characters without fearing being judged. Communication skills are essential for every profession, and studies suggest the importance of implementing basic-level communication courses at both the school and graduate levels. Interpersonal communication is a skill that gains prominence as it is required in every profession. Traditional means of training have limitations for trainees as well as participants. The fear of being judged, the audience interaction, and other factors can affect the performance of a participant in a traditional classroom setting. Virtual reality offers a unique opportunity for its users to participate in training that does not set any boundaries that prevent the participants from performing in front of an audience. Specialised applications designed in VR headsets offer a range of training and exercises for participants without any time, space, or audience limitations. The present study aims at measuring the effectiveness of VR training in improving interpersonal communication skills among students. The study uses a mixed-method approach, in which a pre-and post-test will be designed to measure effectiveness. A preliminary selection process involving a questionnaire and a screening test will identify suitable candidates based on their current communication proficiency levels. Participants will undergo specialised training through the VR application Virtual Speech tailored for interpersonal communication and public speaking, designed to operate without the traditional constraints of time, space, or audience. The training's impact will subsequently be measured through situational exercises to engage the participants in interpersonal communication tasks, thereby assessing the improvement in their skills. The significance of this study lies in its potential to provide empirical evidence supporting VR technology's role in enhancing communication skills, thereby offering valuable insights for integrating VR-based methodologies into educational frameworks to prepare students more effectively for their professional futures.

Keywords: virtual reality, VR training, interpersonal communication, communication skills, 3D environments

Procedia PDF Downloads 53
9498 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 209
9497 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks

Authors: P. R. Dushantha Chaminda, Peng Kai

Abstract:

In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.

Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM

Procedia PDF Downloads 214
9496 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 366
9495 Mechanical Characterization of Banana by Inverse Analysis Method Combined with Indentation Test

Authors: Juan F. P. Ramírez, Jésica A. L. Isaza, Benjamín A. Rojano

Abstract:

This study proposes a novel use of a method to determine the mechanical properties of fruits by the use of the indentation tests. The method combines experimental results with a numerical finite elements model. The results presented correspond to a simplified numerical modeling of banana. The banana was assumed as one-layer material with an isotropic linear elastic mechanical behavior, the Young’s modulus found is 0.3Mpa. The method will be extended to multilayer models in further studies.

Keywords: finite element method, fruits, inverse analysis, mechanical properties

Procedia PDF Downloads 358
9494 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 164
9493 Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System

Authors: Hyung Joo Lee, Jin Young Choi, Gun Soo Park, Kyo Sun Oh, Dong Jun Won

Abstract:

The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency.

Keywords: photovoltaic generation, battery energy storage system, renewable integration, power smoothing

Procedia PDF Downloads 281
9492 Optimal Design of Profiled Steel Sheet for Composite Slab

Authors: Adinew Gebremeskel Tizazu

Abstract:

Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.

Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab

Procedia PDF Downloads 23
9491 Sol-Gel Erbium-Doped Silica-Hafnia Planar Waveguides

Authors: Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor

Abstract:

Erbium actived silica-hafnia planar waveguides have been prepared by sol-gel route. The films were deposited on vitreous silica substrates using dip-coating technique. The parameters of preparation have been chosen to optimize the waveguides for operation in the near infrared (NIR) region, and to increase the luminescence efficiency of the metastable 4I13/2 state of Erbium ions. The waveguides properties were determined by m-lines spectroscopy, loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical process related to the emission in the C telecom band (1530nm-1565nm) of the Erbium ions. The results are discussed with the aim of comparing the structural and optical properties of Erbium activated silica-hafnia planar waveguides with different molar ratio of Si / Hf.

Keywords: erbium, optical amplifiers, silica-hafnia, sol-gel, waveguide

Procedia PDF Downloads 230
9490 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 428
9489 Energy Saving Techniques for MIMO Decoders

Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak

Abstract:

Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.

Keywords: energy, lattice reduction, MIMO, VLSI

Procedia PDF Downloads 330
9488 Optimizing Resource Management in Cloud Computing through Blockchain-Enabled Cost Transparency

Authors: Raghava Satya SaiKrishna Dittakavi

Abstract:

Cloud computing has revolutionized how businesses and individuals store, access, and process data, increasing efficiency and reducing infrastructure costs. However, the need for more transparency in cloud service billing often raises concerns about overcharging and hidden fees, hindering the realization of the full potential of cloud computing. This research paper explores how blockchain technology can be leveraged to introduce cost transparency and accountability in cloud computing services. We present a comprehensive analysis of blockchain-enabled solutions that enhance cost visibility, facilitate auditability, and promote trust in cloud service providers. Through this study, we aim to provide insights into the potential benefits and challenges of implementing blockchain in the cloud computing domain, leading to improved cost management and customer satisfaction.

Keywords: blockchain, cloud computing, cost transparency, blockchain technology

Procedia PDF Downloads 83
9487 Biogas Control: Methane Production Monitoring Using Arduino

Authors: W. Ait Ahmed, M. Aggour, M. Naciri

Abstract:

Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.

Keywords: biogas, Arduino, processing, code, methane, gas sensor, program

Procedia PDF Downloads 323
9486 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 85
9485 Optimization of Hydrogel Conductive Nanocomposite as Solar Cell

Authors: Shimaa M. Elsaeed, Reem K. Farag, Ibrahim M. Nassar

Abstract:

Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell.

Keywords: hydrogel, solar cell, conductive polymer, nanocomposite

Procedia PDF Downloads 399
9484 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 35
9483 Lamb Fleece Quality as an Indicator of Endoparasitism

Authors: Maria Christine Rizzon Cintra, Tâmara Duarte Borges, Cristina Santos Sotomaior

Abstract:

Lamb’s fleece quality can be influenced by many factors, including welfare, stress, nutritional imbalance and presence of ectoparasites. The association of fleece quality and endoparasitism, until now, was not well solved. The present study was undertaken to evaluate if a fleece visual score could predict lamb parasitosis with the focus on gastrointestinal parasites. Fleece quality was scored based on a combination of cleanliness and wool cover, using a three-point scale (1-3). Score 1: fleece shows no sign of dirt or contamination, and had sufficient fleece for the breed and time of year with whole body coverage; Score 2: fleece was little damp or wet, with coat contaminated by small patches of mud or dung and some areas of fleece loose, but no shed or bald patches of no more than 10cm in diameter; Score 3: fleece filthy, very wet with coated in mud or dug, and loose fleece with shed areas of pulls with bald patches greater than 10cm, some areas may be trailing. All fleece quality scores (FQS) were assessed with lamb restrained to ensure close inspection and were done along lamb back and considered just one side of the body. To confirm the gastrointestinal parasites and animal’s anemia, faecal egg counts (FEC) and hematocrit were done for each animal. Lambs were also weighed. All these measurements were done every 15-days, beginning at 60-days until 150-days of life, using 48 animals crossed Texel x Ile de France. For statistics analysis, it was used Stratigraphic Program (4.1. version), and all significant differences between FQS, weight gain, age, hematocrit, and FEC were assessed using analysis of variance following by Duncan test, and the correlation was done by Pearson test at P<0.05. Results showed that animals scored as ‘3’ in FQS had a lower hematocrit and a higher FEC (p<0.05) than animals scored as ‘1’ (hematocrit: 26, 24, 23 and FEC 2107, 2962, 4626 respectively for 1, 2 and 3 FQS). There were correlations between FQS and FEC (r = 0.16), FQS and hematocrit (r = -0.33) an FQS and weight gain (r = -0.20) indicating that worst FQS animals (score 3) had greater gastrointestinal parasites’ infection, were more anemic and had lower weight gain than animals scored as ‘1’ or ‘2’ for FQS. Concerning the lamb´s age, animals that received score ‘3’ in FQS, maintained gastrointestinal parasites’ infection over the time (P<0.05). It was concluded that FQS could be an important indicator to be included in the selective treatment for control verminosis in lambs.

Keywords: fleece, gastrointestinal parasites, sheep, welfare

Procedia PDF Downloads 241
9482 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 300
9481 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process

Authors: Takashi Sakai, Itaru Kumisawa

Abstract:

Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.

Keywords: microtube, dieless drawing, IPF (inverse pole figure), GOS (grain orientation spread), crystallographic analysis

Procedia PDF Downloads 248
9480 Estimation of Enantioresolution of Multiple Stereogenic Drugs Using Mobilized and/or Immobilized Polysaccharide-Based HPLC Chiral Stationary Phases

Authors: Mohamed Hefnawy, Abdulrahman Al-Majed, Aymen Al-Suwailem

Abstract:

Enantioseparation of drugs with multiple stereogenic centers is challenging. This study objectives to evaluate the efficiency of different mobilized and/or immobilized polysaccharide-based chiral stationary phases to separate enantiomers of some drugs containing multiple stereogenic centers namely indenolol, nadolol, labetalol. The critical mobile phase variables (composition of organic solvents, acid/base ratios) were carefully studied to compare the retention time and elution order of all isomers. Different chromatographic parameters such as capacity factor (k), selectivity (α) and resolution (Rs) were calculated. Experimental conditions and the possible chiral recognition mechanisms have been discussed.

Keywords: HPLC, polysaccharide columns, enantio-resolution, indenolol, nadolol, labetalol

Procedia PDF Downloads 450
9479 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 177
9478 Product Life Cycle Assessment of Generatively Designed Furniture for Interiors Using Robot Based Additive Manufacturing

Authors: Andrew Fox, Qingping Yang, Yuanhong Zhao, Tao Zhang

Abstract:

Furniture is a very significant subdivision of architecture and its inherent interior design activities. The furniture industry has developed from an artisan-driven craft industry, whose forerunners saw themselves manifested in their crafts and treasured a sense of pride in the creativity of their designs, these days largely reduced to an anonymous collective mass-produced output. Although a very conservative industry, there is great potential for the implementation of collaborative digital technologies allowing a reconfigured artisan experience to be reawakened in a new and exciting form. The furniture manufacturing industry, in general, has been slow to adopt new methodologies for a design using artificial and rule-based generative design. This tardiness has meant the loss of potential to enhance its capabilities in producing sustainable, flexible, and mass customizable ‘right first-time’ designs. This paper aims to demonstrate the concept methodology for the creation of alternative and inspiring aesthetic structures for robot-based additive manufacturing (RBAM). These technologies can enable the economic creation of previously unachievable structures, which traditionally would not have been commercially economic to manufacture. The integration of these technologies with the computing power of generative design provides the tools for practitioners to create concepts which are well beyond the insight of even the most accomplished traditional design teams. This paper aims to address the problem by introducing generative design methodologies employing the Autodesk Fusion 360 platform. Examination of the alternative methods for its use has the potential to significantly reduce the estimated 80% contribution to environmental impact at the initial design phase. Though predominantly a design methodology, generative design combined with RBAM has the potential to leverage many lean manufacturing and quality assurance benefits, enhancing the efficiency and agility of modern furniture manufacturing. Through a case study examination of a furniture artifact, the results will be compared to a traditionally designed and manufactured product employing the Ecochain Mobius product life cycle analysis (LCA) platform. This will highlight the benefits of both generative design and robot-based additive manufacturing from an environmental impact and manufacturing efficiency standpoint. These step changes in design methodology and environmental assessment have the potential to revolutionise the design to manufacturing workflow, giving momentum to the concept of conceiving a pre-industrial model of manufacturing, with the global demand for a circular economy and bespoke sustainable design at its heart.

Keywords: robot, manufacturing, generative design, sustainability, circular econonmy, product life cycle assessment, furniture

Procedia PDF Downloads 141
9477 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 87
9476 Sensing to Respond & Recover in Emergency

Authors: Alok Kumar, Raviraj Patil

Abstract:

The ability to respond to an incident of a disastrous event in a vulnerable area is very crucial an aspect of emergency management. The ability to constantly predict the likelihood of an event along with its severity in an area and react to those significant events which are likely to have a high impact allows the authorities to respond by allocating resources optimally in a timely manner. It provides for measuring, monitoring, and modeling facilities that integrate underlying systems into one solution to improve operational efficiency, planning, and coordination. We were particularly involved in this innovative incubation work on the current state of research and development in collaboration. technologies & systems for a disaster.

Keywords: predictive analytics, advanced analytics, area flood likelihood model, area flood severity model, level of impact model, mortality score, economic loss score, resource allocation, crew allocation

Procedia PDF Downloads 321
9475 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.

Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization

Procedia PDF Downloads 418
9474 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.

Keywords: bus, consumption energy, GHG, production, simulation, train

Procedia PDF Downloads 443
9473 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 150