Search results for: ultrasound assisted extraction (UAE)
2600 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 2882599 Characteristic Sentence Stems in Academic English Texts: Definition, Identification, and Extraction
Authors: Jingjie Li, Wenjie Hu
Abstract:
Phraseological units in academic English texts have been a central focus in recent corpus linguistic research. A wide variety of phraseological units have been explored, including collocations, chunks, lexical bundles, patterns, semantic sequences, etc. This paper describes a special category of clause-level phraseological units, namely, Characteristic Sentence Stems (CSSs), with a view to describing their defining criteria and extraction method. CSSs are contiguous lexico-grammatical sequences which contain a subject-predicate structure and which are frame expressions characteristic of academic writing. The extraction of CSSs consists of six steps: Part-of-speech tagging, n-gram segmentation, structure identification, significance of occurrence calculation, text range calculation, and overlapping sequence reduction. Significance of occurrence calculation is the crux of this study. It includes the computing of both the internal association and the boundary independence of a CSS and tests the occurring significance of the CSS from both inside and outside perspectives. A new normalization algorithm is also introduced into the calculation of LocalMaxs for reducing overlapping sequences. It is argued that many sentence stems are so recurrent in academic texts that the most typical of them have become the habitual ways of making meaning in academic writing. Therefore, studies of CSSs could have potential implications and reference value for academic discourse analysis, English for Academic Purposes (EAP) teaching and writing.Keywords: characteristic sentence stem, extraction method, phraseological unit, the statistical measure
Procedia PDF Downloads 1662598 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 612597 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 3682596 Effect of Two Bouts of Eccentric Exercise on Knee Flexors Changes in Muscle-Tendon Lengths
Authors: Shang-Hen Wu, Yung-Chen Lin, Wei-Song Chang, Ming-Ju Lin
Abstract:
This study investigated whether the repeated bout effect (RBE) of knee flexors (KF) eccentric exercise would be changed in muscle-tendon lengths. Eight healthy university male students used their KF of non-dominant leg and performed a bout of 60 maximal isokinetic (30°/s) eccentric contractions (MaxECC1). A week after MaxECC1, all subjects used the same KF to perform a subsequent bout of MaxECC2. Changes in maximal isokinetic voluntary contraction torque (MVC-CON), muscle soreness (SOR), relaxed knee joint angle (RANG), leg circumference (CIR), and ultrasound images (UI; muscle-tendon length and muscle angle) were measured before, immediately after, 1-5 days after each bout. Two-way ANOVA was used to analyze all the dependent variables. After MaxECC1, all the dependent variables (e.g. MVC-CON: ↓30%, muscle-tendon length: ↑24%, muscle angle: ↑15%) showed significantly change. Following MaxECC2, all the above dependent variables (e.g. MVC-CON:↓21%, tendon length: ↑16%, muscle angle: ↑6%) were significantly smaller than those of MaxECC1. These results of this study found that protective effect conferred by MaxECC1 against MaxECC2, and changes in muscle damage indicators, muscle-tendon length and muscle angle following MaxECC2 were smaller than MaxECC1. Thus, the amount of shift of muscle-tendon length and muscle angle was related to the RBE.Keywords: eccentric exercise, maximal isokinetic voluntary contraction torque, repeated bout effect, ultrasound
Procedia PDF Downloads 3312595 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study
Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong
Abstract:
Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.Keywords: stem cells, regenerative medicine, osteoarthritis, knee
Procedia PDF Downloads 1192594 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading
Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein
Abstract:
Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound
Procedia PDF Downloads 1922593 Key Frame Based Video Summarization via Dependency Optimization
Authors: Janya Sainui
Abstract:
As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.Keywords: video summarization, key frame extraction, dependency measure, quadratic mutual information
Procedia PDF Downloads 2662592 Density Determination by Dilution for Extra Heavy Oil Residues Obtained Using Molecular Distillation and Supercritical Fluid Extraction as Upgrading and Refining Process
Authors: Oscar Corredor, Alexander Guzman, Adan Leon
Abstract:
Density is a bulk physical property that indicates the quality of a petroleum fraction. It is also a useful property to estimate various physicochemical properties of fraction and petroleum fluids; however, the determination of density of extra heavy residual (EHR) fractions by standard methodologies, (ASTM D70) shows limitations for samples with higher densities than 1.0879 g/cm3. For this reason, a dilution methodology was developed in order to determinate density for those particular fractions, 87 (EHR) fractions were obtained as products of the fractionation of Colombian typical Vacuum Distillation Residual Fractions using molecular distillation (MD) and extraction with Solvent N-hexane in Supercritical Conditions (SFEF) pilot plants. The proposed methodology showed reliable results that can be demonstrated with the standard deviation of repeatability and reproducibility values of 0.0031 and 0.0061 g/ml respectively. In the same way, it was possible to determine densities in fractions EHR up to 1.1647g/cm3 and °API values obtained were ten times less than the water reference value.Keywords: API, density, vacuum residual, molecular distillation, supercritical fluid extraction
Procedia PDF Downloads 2672591 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents
Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef
Abstract:
Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation
Procedia PDF Downloads 612590 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1052589 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature
Authors: Jian Qu, Akira Shimazu
Abstract:
OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval
Procedia PDF Downloads 4942588 Study of Chemical Compounds of Garlic
Authors: Bazaraliyeva Aigerim Bakytzhanovna, Turgumbayeva Aknur Amanbekovna
Abstract:
The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.Keywords: allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method
Procedia PDF Downloads 802587 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction
Authors: Yong Cang
Abstract:
RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection
Procedia PDF Downloads 1072586 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee
Abstract:
This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology
Procedia PDF Downloads 962585 Physicochemical Properties of Soy Protein Isolate (SPI): Starch Conjugates Treated by Sonication
Authors: Gulcin Yildiz, Hao Feng
Abstract:
In recent years there is growing interested in using soy protein because of several advantages compared to other protein sources, such as high nutritional value, steady supply, and low cost. Soy protein isolate (SPI) is the most refined soy protein product. It contains 90% protein in a moisture-free form and has some desirable functionalities. Creating a protein-polysaccharide conjugate to be the emulsifying agent rather than the protein alone can markedly enhance its stability. This study was undertaken to examine the effects of ultrasound treatments on the physicochemical properties of SPI-starch conjugates. The soy protein isolate (SPI, Pro-Fam® 955) samples were obtained from the Archer Daniels Midland Company. Protein concentrations were analyzed by the Bardford method using BSA as the standard. The volume-weighted mean diameters D [4,3] of protein–polysaccharide conjugates were measured by dynamic light scattering (DLS). Surface hydrophobicity of the conjugates was measured by using 1-anilino-8-naphthalenesulfonate (ANS) (Sigma-Aldrich, St. Louis, MO, USA). Increasing the pH from 2 to 12 resulted in increased protein solubility. The highest solubility was 69.2% for the sample treated with ultrasonication at pH 12, while the lowest (9.13%) was observed in the Control. For the other pH conditions, the protein solubility values ranged from 40.53 to 49.65%. The ultrasound treatment significantly decreased the particle sizes of the SPI-modified starch conjugates. While the D [4,3] for the Control was 731.6 nm, it was 293.7 nm for the samples treated by sonication at pH 12. The surface hydrophobicity (H0) of SPI-starch at all pH conditions were significantly higher than those in the Control. Ultrasonication was proven to be effective in improving the solubility and emulsifying properties of soy protein isolate-starch conjugates.Keywords: particle size, solubility, soy protein isolate, ultrasonication
Procedia PDF Downloads 4222584 Product Features Extraction from Opinions According to Time
Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou
Abstract:
Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet
Procedia PDF Downloads 4102583 Status of Bio-Graphene Extraction from Biomass: A Review
Authors: Simon Peter Wafula, Ziporah Nakabazzi Kitooke
Abstract:
Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted.Keywords: exfoliation, nanomaterials, biochar, large-scale, two-dimension
Procedia PDF Downloads 482582 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 1172581 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 852580 Feature Extraction and Classification Based on the Bayes Test for Minimum Error
Authors: Nasar Aldian Ambark Shashoa
Abstract:
Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach
Procedia PDF Downloads 5272579 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum
Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh
Abstract:
Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation
Procedia PDF Downloads 3372578 Integration of the Electro-Activation Technology for Soy Meal Valorization
Authors: Natela Gerliani, Mohammed Aider
Abstract:
Nowadays, the interest of using sustainable technologies for protein extraction from underutilized oilseeds is growing. Currently, a major disposal problem for the oil industry is by-products of plant food processing such as soybean meal. That is why valorization of soybean meal is important for the oil industry since it contains high-quality proteins and other valuable components. Generally, soybean meal is used in livestock and poultry feed but is rarely used in human feed. Though chemical composition of this meal compensate nutritional deficiency and can be used to balance protein in human food. Regarding the efficiency of soybean meal valorization, extraction is a key process for obtaining enriched protein ingredient, which can be incorporated into the food matrix. However, most of the food components such as proteins extracted from oilseeds by-products imply the utilization of organic and inorganic chemicals (e.g. acids, bases, TCA-acetone) having a significant environmental impact. In a context of sustainable production, the use of an electro-activation technology seems to be a good alternative. Indeed, the electro-activation technology requires only water, food grade salt and electricity as main materials. Moreover, this innovative technology helps to avoid special equipment and trainings for workers safety as well as transport and storage of hazardous materials. Electro-activation is a technology based on applied electrochemistry for the generation of acidic and alkaline solutions on the basis of the oxidation-reduction reactions that occur at the vicinity electrode/solution interfaces. It is an eco-friendly process that can be used to replace the conventional acidic and alkaline extraction. In this research, the electro-activation technology for protein extraction from soybean meal was carried out in the electro-activation reactor. This reactor consists of three compartments separated by cation and anion exchange membranes that allow creating non-contacting acidic and basic solutions. Different current intensities (150 mA, 300 mA and 450 mA) and treatment durations (10 min, 30 min and 50 min) were tested. The results showed that the extracts obtained by the electro-activation method have good quality in comparison to conventional extracts. For instance, extractability obtained with electro-activation method was 55% whereas with the conventional method it was only 36%. Moreover, a maximum protein quantity of 48 % in the extract was obtained with the electro-activation technology comparing to the maximum amount of protein obtained by conventional extraction of 41 %. Hence, the environmentally sustainable electro-activation technology seems to be a promising type of protein extraction that can replace conventional extraction technology.Keywords: by-products, eco-friendly technology, electro-activation, soybean meal
Procedia PDF Downloads 2282577 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction
Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer
Abstract:
Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.Keywords: extraction, MOF, ligand, uranium
Procedia PDF Downloads 1602576 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method
Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy
Abstract:
In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence
Procedia PDF Downloads 2762575 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 4342574 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia
Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak
Abstract:
Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification
Procedia PDF Downloads 782573 Non-Invasive Assessment of Peripheral Arterial Disease: Automated Ankle Brachial Index Measurement and Pulse Volume Analysis Compared to Ultrasound Duplex Scan
Authors: Jane E. A. Lewis, Paul Williams, Jane H. Davies
Abstract:
Introduction: There is, at present, a clear and recognized need to optimize the diagnosis of peripheral arterial disease (PAD), particularly in non-specialist settings such as primary care, and this arises from several key facts. Firstly, PAD is a highly prevalent condition. In 2010, it was estimated that globally, PAD affected more than 202 million people and furthermore, this prevalence is predicted to further escalate. The disease itself, although frequently asymptomatic, can cause considerable patient suffering with symptoms such as lower limb pain, ulceration, and gangrene which, in worse case scenarios, can necessitate limb amputation. A further and perhaps the most eminent consequence of PAD arises from the fact that it is a manifestation of systemic atherosclerosis and therefore is a powerful predictor of coronary heart disease and cerebrovascular disease. Objective: This cross sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (i) ankle brachial index (ABI) and (ii) pulse volume waveform (PVW) recorded by the same automated device, with the presence or absence of peripheral arterial disease (PAD) being verified by an Ultrasound Duplex Scan (UDS). Methods: Patients (n = 205) referred for lower limb arterial assessment underwent an ABI and PVW measurement using volume plethysmography followed by a UDS. Presence of PAD was recorded for ABI if < 0.9 (noted if > 1.30) if PVW was graded as 2, 3 or 4 or a hemodynamically significant stenosis > 50% with UDS. Outcome measure was agreement between measured ABI and interpretation of the PVW for PAD diagnosis, using UDS as the reference standard. Results: Sensitivity of ABI was 80%, specificity 91%, and overall accuracy 88%. Cohen’s kappa revealed good agreement between ABI and UDS (k = 0.7, p < .001). PVW sensitivity 97%, specificity 81%, overall accuracy 84%, with a good level of agreement between PVW and UDS (k = 0.67, p < .001). The combined sensitivity of ABI and PVW was 100%, specificity 76%, and overall accuracy 85% (k = 0.67, p < .001). Conclusions: Combing these two diagnostic modalities within one device provided a highly accurate method of ruling out PAD. Such a device could be utilized within the primary care environment to reduce the number of unnecessary referrals to secondary care with concomitant cost savings, reduced patient inconvenience, and prioritization of urgent PAD cases.Keywords: ankle brachial index, peripheral arterial disease, pulse volume waveform, ultrasound duplex scan
Procedia PDF Downloads 1652572 Applications of Artificial Intelligence (AI) in Cardiac imaging
Authors: Angelis P. Barlampas
Abstract:
The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine
Procedia PDF Downloads 782571 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets
Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou
Abstract:
Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification
Procedia PDF Downloads 405