Search results for: tree leaves
1230 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1481229 Writings About Homeland: Palestinian American Poetry
Authors: Laila Shikaki
Abstract:
‘Writings about Home’ discusses the poetry of Palestinian American female poets, especially ones who write about their homelands, living away from home, as well as their family ties to the land. This is a paper about poetry, but it is also about Palestinian American women who use English to convey issues pertaining to homesickness, family, and language. She study poems by Naomi Shihab Nye and Natalie Hanal. In ‘My Father and the Fig Tree,’ for example, Nye depicts her father’s life away from Palestine and his attachment to a tree that represents his homeland and nostalgia. Nye’s style is diverse and unified, and her attention is to details and images. While her words and imagery are usually simple, they are always rich in meaning. Nathalie Handal’s poetry, on the other hand, has a more complicated, multi-layered, and nuanced style as the poet herself lived in many areas and spoke multiple languages. ‘Bethlehem,’ for instance, depicts her city of origin, recalling her grandfather. Her poem ‘Blue Hours’ illustrates a persona’s difficulty in belonging, switching from one language to the next, and feeling a betrayal in both. This paper pays attention to language and how being bilingual adds another level of exile and pain to those who have fled or were forced to leave Palestine. This paper is very timely as the issue of Palestinian freedom and its right to autonomy and self-determination is the central stage for many Americans, seen in their protests, university encampments, and graduation ceremonies, not forgetting its effect on voters’ decisions for president and elected officials.Keywords: Palestinian American, poetry, homeland, Nye, Handal
Procedia PDF Downloads 291228 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1281227 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia
Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun
Abstract:
Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species
Procedia PDF Downloads 961226 Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia
Authors: Abduselam Faris, Rijalu Negash, Zera Kedir
Abstract:
This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward.Keywords: value chain analysis, wood production, southwest Ethiopia, constraints and opportunities
Procedia PDF Downloads 941225 Effect of Poultry Manure and Nitrogen, Phosphorus, and Potassium (15:15:15) Soil Amendment on Growth and Yield of Carrot (Daucus carota)
Authors: Benjamin Osae Agyei, Hypolite Bayor
Abstract:
This present experiment was carried out during the 2012 cropping season, at the Farming for the Future Experimental Field of the University for Development Studies, Nyankpala Campus in the Northern Region of Ghana. The objective of the experiment was to determine the carrot growth and yield responses to poultry manure and N.P.K (15:15:15). Six treatments (Control (no amendment), 20 t/ha poultry manure (PM), 40 t/ha PM, 70 t/ha PM, 35 t/ha PM + 0.11t/ha N.P.K and 0.23 t/ha N.P.K) with three replications for each were laid in a Randomized Complete Block Design (RCBD). Data were collected on plant height, number of leaves per plant, canopy spread, root diameter, root weight, and root length. Microsoft Excel and Genstat Statistical Package (9th edition) were used for the data analysis. The treatment means were compared by using Least Significant Difference at 10%. Generally, the results showed that there were no significant differences (P>0.1) among the treatments with respect to number of leaves per plant, root diameter, root weight, and root length. However, significant differences occurred among plant heights and canopy spreads. Plant height treated with 40 t/ha PM at the fourth week after planting and canopy spread at eight weeks after planting and ten weeks after planting by 70 t/ha PM and 20 t/ha PM respectively showed significant difference (P<0.1). The study recommended that any of the amended treatments can be applied at their recommended rates to plots for carrot production, since there were no significant differences among the treatments.Keywords: poultry manure, N.P.K., soil amendment, growth, yield, carrot
Procedia PDF Downloads 4711224 An Improved Parallel Algorithm of Decision Tree
Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng
Abstract:
Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.Keywords: classification, Gini index, parallel data mining, pruning ahead
Procedia PDF Downloads 1231223 Effect of Jatropha curcas Leaf Extract on Castor Oil Induced Diarrhea in Albino Rats
Authors: Fatima U. Maigari, Musa Halilu, M. Maryam Umar, Rabiu Zainab
Abstract:
Plants as therapeutic agents are used as drug in many parts of the world. Medicinal plants are mostly used in developing countries due to culture acceptability, belief or due to lack of easy access to primary health care services. Jatropha curcas is a plant from the Euphorbiaceae family which is widely used in Northern Nigeria as an anti-diarrheal agent. This study was conducted to determine the anti-diarrheal effect of the leaf extract on castor oil induced diarrhea in albino rats. The leaves of J. curcas were collected from Balanga Local government in Gombe State, north-eastern Nigeria; due to its bioavailability. The leaves were air-dried at room temperature and ground to powder. Phytochemical screening was done and different concentrations of the extract was prepared and administered to the different categories of experimental animals. From the results, aqueous leaf extract of Jatropha curcas at doses of 200mg/Kg and 400mg/Kg was found to reduce the mean stool score as compared to control rats, however, maximum reduction was achieved with the standard drug of Loperamide (5mg/Kg). Treatment of diarrhea with 200mg/Kg of the extract did not produce any significant decrease in stool fluid content but was found to be significant in those rats that were treated with 400mg/Kg of the extract at 2hours (0.05±0.02) and 4hours (0.01±0.01). A significant reduction of diarrhea in the experimental animals signifies it to possess some anti-diarrheal activity.Keywords: anti-diarrhea, diarrhea, Jatropha curcas, loperamide
Procedia PDF Downloads 3311222 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance
Procedia PDF Downloads 2651221 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 231220 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico
Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez
Abstract:
Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth
Procedia PDF Downloads 2551219 Response of Six Organic Soil Media on the Germination, Seedling Vigor Performance of Jack Fruit Seeds in Chitwan Nepal
Authors: Birendra Kumar Bhattachan
Abstract:
Organic soil media plays an important role for seed germination, growing, and producing organic jack fruits as the source of food such as vitamin A, C, and others for human health. An experiment was conducted to find out the appropriate organic soil medias to induce germination and seedling vigor of jack fruit seeds at the farm of Agriculture and Forestry University (AFU) Chitwan Nepal during June 2022 to October 2022. The organic soil medias used as treatments were as 1. soil collected under the Molingia tree; 2. soil, FYM and RH (2:1;1); 3. soil, FYM (1:1); 4. sand, FYM and RH (2:1:1), 5, sand, soil, FYM and RH (1:1:1:1) and 6. sand, soil and RH (1:2:1) under Completely Randomized Design (CRD) with four replications. Significantly highest germination of 88% was induced by soil media, followed by media of soil and FYM (!:1) i.e. 63% and the media of soil, FYM and RH (2:1;1) and the least media was sand, soil, FYM and RH (1:1:1:) to induce germination of 28%. Significantly highest seedling length of 73 cm was produced by soil media followed by the media soil, sand, and RH (1:2:1), i.e. 72 cm and the media soil, sand, FYM, and RH (1:1:1:1) and the least media was soil, FYM and RH (2:1:1) to produce 62 cm seedling length, Similarly, significantly highest seedling vigor of 6257 was produced by soil media followed by the media soil and FYM (1:1) i.e. 4253 and the least was the media sand, soil, FYM and RH (1:1:1:1) to produce seedling vigor of1916. Based on this experiment, it was concluded that soil media collected under the Moringia tree could induce the highest germinating capacity of jack fruit seeds and then seedling vigor.Keywords: jack fruit seed, soil media, farm yard manure, sand media, rice husk
Procedia PDF Downloads 1991218 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1291217 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 4101216 Advanced Combinatorial Method for Solving Complex Fault Trees
Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle
Abstract:
Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures
Procedia PDF Downloads 451215 Impact of Foliar Formulations of Macro and Micro Nutrients on the Tritrophic Association of Wheat Aphid and Entomophagous Insects
Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat
Abstract:
In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association among pest, natural enemies and host plant is highly affected by food resource concentration and predator/parasitoid factor of any ecosystem. The present study was conducted to estimate the effect of different dose levels of macro and micronutrients on the aphid population and its entomophagous insect on wheat and their tri-trophic association. The experiment was laid out in RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of the February till the maturity of the crop. Data regarding aphid population and coccinellids counts were collected on weekly basis and subjected to analysis of variance and mean comparison. The data revealed that aphid population was at peak in the last week of March. Coccinellids population increased side by side with aphid population and declined after second week of April. Aphid parasitism was maximum 25% on recommended dose of Double and Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in plots treated with recommended double dose mixture of Double + Flasher and Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application. Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid
Procedia PDF Downloads 2301214 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3291213 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol
Authors: Aminah Muchdar
Abstract:
Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean
Procedia PDF Downloads 2171212 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria
Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali
Abstract:
Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3
Procedia PDF Downloads 1031211 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids
Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh
Abstract:
Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.Keywords: green extraction, ultrasound, patchoulol, ionic liquids
Procedia PDF Downloads 3621210 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 1611209 Novel Recombinant Betasatellite Associated with Vein Thickening Symptoms on Okra Plants in Saudi Arabia
Authors: Adel M. Zakri, Mohammed A. Al-Saleh, Judith. K. Brown, Ali M. Idris
Abstract:
Betasatellites are small circular single stranded DNA molecules found associated with begomoviruses on field symptomatic plants. Their genome size is about half that of the helper begomovirus, ranging between 1.3 and 1.4 kb. The helper begomoviruses are usually members of the family Geminiviridae. Okra leaves showing vein thickening were collected from okra plants growing in Jazan, Saudi Arabia. Total DNA was extracted from leaves and used as a template to amplify circular DNA using rolling circle amplification (RCA) technology. Products were digested with PstI to linearize the helper viral genome(s), and associated DNA satellite(s), yielding a 2.8kbp and 1.4kbp fragment, respectively. The linearized fragments were cloned into the pGEM-5Zf (+) vector and subjected to DNA sequencing. The 2.8 kb fragment was identified as Cotton leaf curl Gezira virus genome, at 2780bp, an isolate closely related to strains reported previously from Saudi Arabia. A clone obtained from the 1.4 kb fragments he 1.4kb was blasted to GeneBank database found to be a betasatellite. The genome of betasatellite was 1357-bp in size. It was found to be a recombinant containing one fragment (877-bp) that shared 91% nt identity with Cotton leaf curl Gezira betasatellite [KM279620], and a smaller fragment [133--bp) that shared 86% nt identity with Tomato leaf curl Sudan virus [JX483708]. This satellite is thus a recombinant between a malvaceous-infecting satellite and a solanaceous-infecting begomovirus.Keywords: begomovirus, betasatellites, cotton leaf curl Gezira virus, okra plants
Procedia PDF Downloads 3411208 Rapid Green Synthesis of Silver Nanoparticles Using Solanum Nigrum Leaves Extract with Antimicrobial and Anticancer Properties
Authors: Anushaa A.
Abstract:
In this work, silver nanoparticles (AgNP) were manufactured directly without harmful chemicals utilising methanol extract (SNLME) Solanum nigrume leaves. We are using nigrum leaf extract from Solanum, which converts silver nitrate to silver ions, for synthesization purposes. An examination of the AgNP produced was performed using ultraviolet (UV-VIS) spectroscopy, infrared spectroscopy (FTIR) transformed from Fourier and scanning electrons (SEM). Biological activity was also tested. UV-VIS has proven that biosynthesized AgNP exists (420-450 nm). The FTIR spectrum has been utilised to confirm the presence of different functional groups within the biomolecules, which are a nanoparticular capping agent and the spectroscopic and crystal nature of AgNP. The viability of the silver nanoparticles was evaluated using zeta potential calculations. Negative zeta potential of -33.4 mV demonstrated the stability of silver-nanoparticles. The morphology of AgNP was examined using a scanning electron microscope. Greenly generated AgNP showed significant anti-Staphylococcus aureus, Candida, and Escherichia coli action. The green AgNP demonstration indicated that the IC50 for the human teratocarcinoma cell line was 29.24 μg/ml during 24 hours of therapy (PA1 Ovarian cell line). The dose-dependent effects were reported in both antibacterial and cytotoxicity assays and as an effective agent. Finally, the findings of this research showed that silver nanoparticles generated might serve as a viable therapeutic agent to combat microorganisms killing and curing cancer.Keywords: antimicrobial activity, PA1 ovarian cancer cell line, silver nanoparticles, Solanum nigrum
Procedia PDF Downloads 1871207 Production and Characterization of Biochars from Torrefaction of Biomass
Authors: Serdar Yaman, Hanzade Haykiri-Acma
Abstract:
Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.Keywords: biochar, biomass, fuel upgrade, torrefaction
Procedia PDF Downloads 3731206 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth
Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.Keywords: treeline, dynamic, climate, modeling
Procedia PDF Downloads 831205 Species Diversity of Coleoptera (Insecta: Coleoptera) Damaging Saxaul (Chenopodiáceae: Haloxylon spp.) in the Deserts Area of South-East Kazakhstan
Authors: B. Mombayeva
Abstract:
In the deserts area of south east of Kazakhstan, 16 species of Coleoptera from 6 families and 12 genus of insects damaging Saxaul have been revealed. The vast number of species belong to the Cerambycidae familyCapricorn Beetle (4 species) and Hemlock Borer of Melanophila genus and 3 species of weevils and flea-beetles, and 1 species of coctsinelids and carrion beetle. Some of them cause appreciable harm, and sometimes very heavy damageto saxaul. According to food specialization they are divided into polyphages and - oligophages. According to the confinement to saxaul parts, registered beetles insects mainly feed on generative parts (11 species) and leaves (5 species). 9 species from them feed on roots, leaves and generative organs. They are scarablike beetle’s larvae (Apatophysismongolica Semenov., Tursmenigenavarentzovi Melg., Phytoecia (Opsilla) coerulescens Scopoli., Apatophysismongolica Semenov.), Jewel beetles (Julodis (s. Str.) Variolaris (Pallas), Sphenoptera (s. Str.) cuprina Motschulsky, S. (s. str.) exarata (Fischer), SphenopterapotaniniJak.) and some weevil (Barisartemisiae Hbst.). The larvae eat the roots and the imago - generative organs. Their feeding noticeably has its effect on the condition of saxaul. Beetles also slightlygnaw vegetative organs of plants. Among the harmful species the desert Capricorn Beetle Julodisvariolaris (Pallas) deserved attention. Its larvae live in the soil and cause harm to the roots of Saxaul and other pasture plants. In addition, the larvae of Sphenopterapotanini, S.punctatissima colonize the roots, trunk and branches of Haloxylon. In the spring Saxaul flowers are much damaged by Ladybeetle Bulaealichatchovi.Keywords: saxaul, coleoptera, insecta, haloxylon
Procedia PDF Downloads 2561204 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure
Authors: V. Nagammai
Abstract:
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.Keywords: application specific noc, b* tree representation, floor planning, t tree representation
Procedia PDF Downloads 3931203 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium
Authors: Muhammad Saeed, Sheeba Khalid
Abstract:
Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation
Procedia PDF Downloads 1651202 Determination of Antioxidant Activity in Raphanus raphanistrum L.
Authors: Esma Hande Alıcı, Gülnur Arabacı
Abstract:
Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish
Procedia PDF Downloads 2761201 Web Page Design Optimisation Based on Segment Analytics
Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi
Abstract:
In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.Keywords: analytics, design optimization, visual block trees, vision based technology
Procedia PDF Downloads 266