Search results for: trained athletes
843 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 90842 Food Safety Management in Riyadh’s Ministry of Health Hospitals
Authors: A. Alrasheed, I. Connerton
Abstract:
Providing patients with safe meals on a daily basis is one of the challenges in the healthcare sector. In Saudi Arabia matters related to food safety and hygiene have been the heart of the Ministry of Health (MOH) and Saudi Food and Drugs Authority (SFDA). The aim of this study is to examine the causes of inadequate implementation of food safety management systems such as HACCP in Riyadh’s MOH hospitals. By the law, food safety must be managed using a documented, HACCP based approach, and food handlers must be appropriately trained in food safety. Food handlers in Saudi Arabia are not required to provide a certificate or attend a food handling training course even in healthcare sectors. Since food safety and hygiene issues are of increasing importance for Saudi Arabian health decision makers, the SFDA has been established to apply food hygiene requirements in all food operations. It should be pointed out that the implications of food outbreaks on the whole society may potentially go beyond individual health impacts but also impact on the Nation’s health and bring about economic repercussions.Keywords: food safety, patient, hospital, HACCP
Procedia PDF Downloads 872841 Vr-GIS and Ar-GIS In Education: A Case Study
Authors: Ilario Gabriele Gerloni, Vincenza Carchiolo, Alessandro Longheu, Ugo Becciani, Eva Sciacca, Fabio Vitello
Abstract:
ICT tools and platforms endorse more and more educational process. Many models and techniques for people to be educated and trained about specific topics and skills do exist, as classroom lectures with textbooks, computers, handheld devices and others. The choice to what extent ICT is applied within learning contexts is related to personal access to technologies as well as to the infrastructure surrounding environment. Among recent techniques, the adoption of Virtual Reality (VR) and Augmented Reality (AR) provides significant impulse in fully engaging users senses. In this paper, an application of AR/VR within Geographic Information Systems (GIS) context is presented. It aims to provide immersive environment experiences for educational and training purposes (e.g. for civil protection personnel), useful especially for situations where real scenarios are not easily accessible by humans. First acknowledgments are promising for building an effective tool that helps civil protection personnel training with risk reduction.Keywords: education, virtual reality, augmented reality, GIS, civil protection
Procedia PDF Downloads 178840 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 498839 Public Relations for the Faculty of Management Science in Suan Sunandha Rajabhat University
Authors: Narong Anurak
Abstract:
The objectives of this research were to investigate the knowledge and understanding of public relations principles for public relations officials of the office of the faculty of management science in Ratjabhat Suan Sunandha University and to determine the approach of public relations for the Office of Faculty of Management Science. The questionnaire was utilized as a tool to collect data. Statistics utilized included frequency, percentage, mean, standard deviation, and regression analysis. The results of the research showed that the public relations officials misunderstood on public relations principles. The lack of the perception in media of the target groups both in-house and outside caused the misunderstanding on the roles, mission, and responsibilities. It would be beneficial to public relations division and other divisions of the office of the faculty of management science to be trained and obtained more knowledge and skills on the public relations to support the public relations work for the organization.Keywords: faculty of management science, preparation in media, public relations, Suan Sunandha Rajabhat University
Procedia PDF Downloads 384838 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.Keywords: inverse optimal control, radial basis function, neural network, controller design
Procedia PDF Downloads 553837 The Copyright Eligibility of Sports Events and Performances
Authors: Emre Bayamlıoğlu
Abstract:
Apart from being the subject of neighboring rights when broadcasted on TV or of cinematographic work when fixed to a tangible medium including a hard drive, the copyright eligibility of a sports performance, and eventually the sporting event has once again given rise to controversy following the CJEU judgment in the Murphy case. Most of the arguments which deny copyright protection for sports performances focus on the fact that unlike movies, plays, television programs, or operas, athletic events are competitive and have no underlying script. The first part of the paper aims to explain that such rhetoric is rather weak simply for the fact that, several types of performances such as improvised musical or dramatic shows are still protected by copyright despite the fact that they are not based on a script. The second part argues that the core reason for the denial copyright protection was the functionality aiming certain practical results such as winning the game, scoring, eliminating an opponent, obstructing a shot and etc., but no scientific or artistic expression in whatsoever form. The paper further argues that expanding copyright protection to functional performances would give rise to unintended copyright claims by the athletes on tackles, shoots, passes, crosses etc. resulting with further restrictions on reporting and photographing of sporting events. The final part provides a policy analysis of the trend to broaden the scope of copyright to cover sports performances. It is argued that such expansion will clearly undermine the ratio legis of copyright laws since it will give rise to excessive commodification of information beyond the needs of a viable market economy. Therefore, remedies other than copyright protection such as unfair competition and unjust enrichment provides sufficient redress for the damages to be sustained by the investors of sporting events.Keywords: copyright eligibility, idea-expression dichotomy, sports performance
Procedia PDF Downloads 473836 Criticality of Socio-Cultural Factors in Public Policy: A Study of Reproductive Health Care in Rural West Bengal
Authors: Arindam Roy
Abstract:
Public policy is an intriguing terrain, which involves complex interplay of administrative, social political and economic components. There is hardly any fit-for all formulation of public policy as Lindbloom has aptly categorized it as a science of muddling through. In fact, policies are both temporally and contextually determined as one the proponents of policy sciences Harold D Lasswell has underscored it in his ‘contextual-configurative analysis’ as early as 1950s. Though, a lot of theoretical efforts have been made to make sense of this intricate dynamics of policy making, at the end of the day the applied area of public policy negates any such uniform, planned and systematic formulation. However, our policy makers seem to have learnt very little of that. Until recently, policy making was deemed as an absolutely specialized exercise to be conducted by a cadre of professionally trained seasoned mandarin. Attributes like homogeneity, impartiality, efficiency, and neutrality were considered as the watchwords of delivering common goods. Citizen or clientele was conceptualized as universal political or economic construct, to be taken care of uniformly. Moreover, policy makers usually have the proclivity to put anything into straightjacket, and to ignore the nuances therein. Hence, least attention has been given to the ground level reality, especially the socio-cultural milieu where the policy is supposed to be applied. Consequently, a substantial amount of public money goes in vain as the intended beneficiaries remain indifferent to the delivery of public policies. The present paper in the light of Reproductive Health Care policy in rural West Bengal has tried to underscore the criticality of socio-cultural factors in public health delivery. Indian health sector has traversed a long way. From a near non-existent at the time of independence, the Indian state has gradually built a country-wide network of health infrastructure. Yet it has to make a major breakthrough in terms of coverage and penetration of the health services in the rural areas. Several factors are held responsible for such state of things. These include lack of proper infrastructure, medicine, communication, ambulatory services, doctors, nursing services and trained birth attendants. Policy makers have underlined the importance of supply side in policy formulation and implementation. The successive policy documents concerning health delivery bear the testimony of it. The present paper seeks to interrogate the supply-side oriented explanations for the failure of the delivery of health services. Instead, it identified demand side to find out the answer. The state-led and bureaucratically engineered public health measures fail to engender demands as these measures mostly ignore socio-cultural nuances of health and well-being. Hence, the hiatus between supply side and demand side leads to huge wastage of revenue as health infrastructure, medicine and instruments remain unutilized in most cases. Therefore, taking proper cognizance of these factors could have streamlined the delivery of public health.Keywords: context, policy, socio-cultural factor, uniformity
Procedia PDF Downloads 316835 Strengthening Facility-Based Systems to Improve Access to In-Patient Care for Sick Newborns in Brong Ahafo Region, Ghana
Authors: Paulina Clara Appiah, Kofi Issah, Timothy Letsa, Kennedy Nartey, Amanua Chinbuah, Adoma Dwomo-Fokuo, Jacqeline G. Asibey
Abstract:
Background: The Every Newborn Action Plan provides evidence–based interventions to end preventable deaths in high burden countries. Brong Ahafo Region is one of ten regions in Ghana with less than half of its district hospitals having sick newborn units. Facility-based neonatal care is not prioritized and under-funded, and there is also inadequate knowledge and competence to manage the sick. The aim of this intervention was to make available in–patient care for sick newborns in all 19 district hospitals through the strengthening of facility-based systems. Methods: With the development and dissemination of the National Newborn Strategy and Action Plan 2014-2018, the country was able to attract PATH which provided the region with basic resuscitation equipment, supported hospital providers’ capacity building in Helping Babies Breathe, Essential Care of Every Baby, Infection Prevention and Management and held a symposia on managing the sick newborn. Newborn advocacy was promoted through newborn champions at the facility and community levels. Hospital management was then able to mobilize resources from communities, corporate organizations and from internally generated funds; created or expanded sick newborn care units and provided essential medicines and equipment. Kangaroo Mother Care was initiated in 6 hospitals. Pediatric specialist outreach services initiated comprised telephone consultations, teaching ward rounds and participating in perinatal death audits meetings. Newborn data capture and management was improved through the provision and training on the use of standard registers provided from the national level. Results: From February 2015 to November 2017, hospitals with sick newborn units increased from 7 to 19 (37%-100%). 180 pieces each of newborn ventilation bags and masks size 0, 1 and penguin suction bulbs were distributed to the hospitals, in addition to 20 newborn mannequin sets and 90 small clinical reminder posters. 802 providers (96.9%) were trained in resuscitation, of which 96% were successfully followed up in 6 weeks, 91% in 6 months and 80% in 12 months post-training. 53 clinicians (65%) were trained and mentored to manage sick newborns. 56 specialist teaching ward rounds were conducted. Data completeness improved from 92.6% - 99.9%. Availability of essential medicines improved from 11% to 100%. Number of hospital cots increased from 116 to 248 (214%). Cot occupancy rate increased from 57.4% to 92.5%. Hospitals with phototherapy equipment increased from 0 to 12 (63%). Hospitals with incubators increased from 1 to 12 (5%-63%). Newborn deaths among admissions reduced from 6.3% to 5.4%. Conclusion: Access to in-patient care increased significantly. Newborn advocacy successfully mobilized resources required for strengthening facility –based systems.Keywords: facility-based systems, Ghana, in-patient care, newborn advocacy
Procedia PDF Downloads 249834 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network
Authors: R. Boudjelthia
Abstract:
The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete
Procedia PDF Downloads 379833 Liquidity and Cash Management in Business-A Key to Business Survival and Growth: The Nigerian Case
Authors: Ugbor Raphael Oluchukwu
Abstract:
Focusing on liquidity comes more naturally to a Chief Executive Officer than an Accountant who is trained to practice accrual accounting. When business is just commencing, it is essentially run on a cheque book (cash accounting) and for as long as there is cash in the accounts, the business is solvent. When complexity sets in and the business adopts financial accounting, the effect of liquidity and cash management becomes more pronounced. The management of cash no doubts impacts positively on the survival and growth of firms. What is in doubt is the amount of cash to be held by a firm as enough cash to enable the firm stay “afloat”. The focus of this paper is to determine liquidity and cash management in business, the Nigerian case. The specific objectives of the study are to do a theoretical review of the amount of cash to be held by a firm as enough cash to enable it stay afloat and to do a theoretical analysis to show the effect of cash flow on the survival and growth of firms in Nigeria.Keywords: cash, firm survival, growth, liquidity management
Procedia PDF Downloads 586832 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats
Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar
Abstract:
Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.Keywords: boldenone, Jujube extract, pancreases tissue, resistance training
Procedia PDF Downloads 70831 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 116830 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan
Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette
Abstract:
Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers
Procedia PDF Downloads 263829 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 78828 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 261827 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks
Authors: Mahdi Bazarganigilani
Abstract:
Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks
Procedia PDF Downloads 162826 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 72825 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 69824 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach
Authors: Bashiru Olayinka Adisa, Najeem Lateef
Abstract:
The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.Keywords: electronics, sensor theories and motor, robot, technology
Procedia PDF Downloads 280823 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 382822 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes
Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini
Abstract:
Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T
Procedia PDF Downloads 267821 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 177820 Combining Work and Study: A Solution for Stronger University-Industry Linkage
Authors: Payam Najafi, Behnam Ebrahimi, Hamid Montazerolghaem, Safoura Akbari-Alavijeh, Rasoul Tarkesh Esfahani
Abstract:
The combination of work and study has been recently gained lots of attention due to the crucial demand of industries to skillfully trained youth. Nevertheless, the distance between university and industry makes this combination challenging. According to the OECD (2012), in most countries, there is a limited link between students’ field of study and their area of work while studying. On the other hand, high unemployment rates among the specialized workforce, which is common in developing countries, highlights the need to strengthen this relationship. Innovative Center of Isfahan Chamber of Commerce has defined a project called 'POUYESH', which helps students to find related work opportunities to their field of study as well as supporting industries to supply their needed workforce. The present research is sought to explore the effect of the running project as a model of combining work and study on the university-industry linkage.Keywords: work and study, university-industry linkage, POUYESH project, field of study
Procedia PDF Downloads 184819 Effectiveness of a Peer-Mediated Intervention on Writing Skills in Students with Autism Spectrum Disorder in the Inclusive Classroom
Authors: Siddiq Ahmed
Abstract:
The current study aimed to investigate the effectiveness of a Peer-Mediated Intervention (PMI) on writing skills for a student with autism spectrum disorders in inclusive classrooms. The participants in this study were two students, one as a tutor and another as a tutee who was diagnosed with autism spectrum disorder (ASD). The target participant struggled with writing skills and was paired with a student with high academic outcomes. The Tutor had a readiness to act as a tutor for his peer and was trained on how to assist his peer and how to identify and guide his peer’s writing mistakes. Multiple baseline design across behaviors was implemented to monitor the student’s progress in writing skills. The results of the present study showed that PMI yielded significant improvements in academic achievements for the target student. This study suggests that further studies should replicate the current study with an intensive focus on other academic skills such as reading comprehension, writing social stories, and math.Keywords: peer tutoring, writing skills, autism, inclusion
Procedia PDF Downloads 108818 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 274817 Lessons Learned from Implementation of Remote Pregnant and Newborn Care Service for Vulnerable Women and Children During COVID-19 and Political Crisis in Myanmar
Authors: Wint Wint Thu, Htet Ko Ko Win, Myat Mon San, Zaw Lin Tun, Nandar Than Aye, Khin Nyein Myat, Hayman Nyo Oo, Nay Aung Lin, Kusum Thapa, Kyaw Htet Aung
Abstract:
Background: In Myanmar, the intense political instability happened to start in Feb-2021, while the COVID-19 pandemic waves are also threatening the public health system, which subsequently led to severe health sector crisis, including difficulties in accessing maternal and newborn health care for vulnerable women and children. The Remote Pregnant and Newborn Care (RPNC) uses a telehealth approach United States Agency for International Development (USAID)-funded Essential Health Project. Implementation: The Remote Pregnant and Newborn Care (RPNC) service has adapted to the MNCH needs of vulnerable pregnant women and was implemented to mitigate the risk of limited access to essential quality MNH care in Yangon, Myanmar, under women, and the project trained 13 service providers on a telehealth care package for pregnancy and newborn developed Jhpiego to ensure understanding of evidence-based MNCH care practices. The phone numbers of the pregnant women were gathered through the preexisting and functioning community volunteers, who reach the most vulnerable pregnant women in the project's targeted area. A total of 212 pregnant women have been reached by service providers for RPNC during the implementation period. The trained service providers offer quality antenatal and postnatal care, including newborn care, via telephone calls. It includes 24/7 incoming calls and time-allotted outgoing calls to the pregnant women during antenatal and postnatal periods, including the newborn care. The required data were collected daily in time with the calls, and the quality of the medical services is made assured with the track of the calls, ensuring data privacy and patient confidentiality. Lessons learned: The key lessons are 1) cost-effectiveness: RPNC service could reduce out of pocket expenditure of pregnant women as it only costs 1.6 United States dollars (USD) per one telehealth call while it costs 8 to 10 USD per one time in-person care service at private service providers, including transportation cost, 2) network of care: telehealth call could not replace the in-person antenatal and postnatal care services, and integration of telehealth calls with in-person care by local healthcare providers with the support of the community is crucial for accessibility to essential MNH services by poor and vulnerable women, and 3) sharing information on health access points: most of the women seem to have financial barriers in accessing private health facilities while public health system collapse and telehealthcare could provide information on low-cost facilities and connect women to relevant health facilities. These key lessons are important for future efforts regarding the implementation of remote pregnancy and newborn care in Myanmar, especially during the political crisis and COVID-19 pandemic situation.Keywords: telehealth, accessibility, maternal care, newborn care
Procedia PDF Downloads 101816 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 265815 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network
Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar
Abstract:
Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE
Procedia PDF Downloads 358814 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network
Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi
Abstract:
The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design
Procedia PDF Downloads 276