Search results for: support vector data description
29831 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies
Authors: Mogale Sabone, Thabiso Ntlole
Abstract:
The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.Keywords: decision support tool, manufacturing, quality control, quality management
Procedia PDF Downloads 56629830 The Experiences and Needs of Mothers’ of Children With Cancer in Coping With the Child's Disease
Authors: Maarja Karbus, Elsbet Lippmaa, Kadri Kööp, Mare Tupits
Abstract:
Aim: The aim is to describe the experiences and needs of mothers of children with cancer in coping with the child's illness. Background: Cancer affects different life areas. Especially if it is a child, in this case the whole family is involved. Loved ones are mentally affected, there are limitations, and life changes need to be made to make the whole treatment regimen and recovery as comfortable as possible. Also, the whole process is expensive and time consuming. The research is part of a larger project that covers the experiences and needs of parents of children with chronic illness and coping strategies related to the child's illness. Design: Qualitative, empirical, descriptive research. Method: Semi-structured interviews were used to collect data and inductive content analysis was used to analyze the data. The interviews were conducted in the autumn of 2020, 5 respondents participated in the research. Results and Conclusions: The research revealed that the mothers' experiences of coping with a child's disease included health-related experiences, material aspects, changes in lifestyle, support systems and contact with professionals. Regarding the organizational and material aspects of life, the subjects presented experiences with economic problems, adaptation of changes in lifestyle, access to information and changes in the treatment process. With regard to health, the respondents identified experiences with the mother's physical and mental health and experiences with the health of an ill child. The experience of different support systems was related to the support of family, friends, acquaintances, various organizations and specialists. Experiences with specialist support included experiences with family relationships and positive and negatiive experiences with staff. The mothers' needs in dealing with the child's disease included the mother's emotional needs, the support of other family members, and the need for various support systems and services. The needs of coping with the child were the need for understanding, support, confidence, the need to be strong and courageous, the need to ignore one's own needs, and the need for personal time and rest. The needs of other family members included the needs of an ill child and the need to pay attention to other children in the family. The needs of different supporters and services were related to different helpers and different services.Keywords: cancer, mother, coping, child, need, experience, illness
Procedia PDF Downloads 15029829 Investigating Teaching and Learning to Meet the Needs of Deaf Children in Physical Education
Authors: Matthew Fleet, Savannah Elliott
Abstract:
Background: This study investigates the use of teaching and learning to meet the needs of deaf children in the UK PE curriculum. Research has illustrated that deaf students in mainstream schools do not receive sufficient support from teachers in lessons. This research examines the impact of different types of hearing loss and its implications within Physical Education (PE) in secondary schools. Purpose: The purpose of this study is to highlight challenges PE teachers face and make recommendations for more inclusive learning environments for deaf students. The aims and objectives of this research are: to critically analyse the current situation for deaf students accessing the PE curriculum, by identifying barriers deaf students face; to identify the challenges for PE teachers in providing appropriate support for deaf students; to provide recommendations for deaf awareness training, to enhance PE teachers’ understanding and knowledge. Method: Semi-structured interviews collected data from both PE teachers and deaf students, to examine: the support available and coping mechanisms deaf students use when they do not receive support; strategies PE teachers use to provide support for deaf students; areas for improvement and potential strategies PE teachers can apply to their practice. Results & Conclusion: The findings from the study concluded that PE teachers were inconsistent in providing appropriate support for deaf students in PE lessons. Evidence illustrated that PE teachers had limited exposure to deaf awareness training. This impacted on their ability to support deaf students effectively. Communication was a frequent barrier for deaf students, affecting their ability to retain and learn information. Also, the use of assistive technology was found to be compromised in practical PE lessons.Keywords: physical education, deaf, inclusion, education
Procedia PDF Downloads 15529828 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 33629827 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Authors: L. Parisi
Abstract:
Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation
Procedia PDF Downloads 44329826 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 14229825 Competition, Stability, and Economic Growth: A Causality Approach
Authors: Mahvish Anwaar
Abstract:
Research Question: In this paper, we explore the causal relationship between banking competition, banking stability, and economic growth. Research Findings: The unbalanced panel data starting from 2000 to 2018 is collected to analyze the causality among banking competition, banking stability, and economic growth. The main focus of the study is to check the direction of causality among selected variables. The results of the study support the demand following, supply leading, feedback, and neutrality hypothesis conditional to different measures of banking competition, banking stability, and economic growth. Theoretical Implication: Jayakumar, Pradhan, Dash, Maradana, and Gaurav (2018) proposed a theoretical model of the causal relationship between banking competition, banking stability, and economic growth by using different indicators. So, we empirically test the proposed indicators in our study. This study makes a contribution to the literature by showing the defined relationship between developing and developed countries. Policy Implications: The study covers various policy implications regarding investors to analyze how to properly manage their finances, and government agencies will take help from the present study to find the best and most suitable policies by examining how the economy can grow concerning its finances.Keywords: competition, stability, economic growth, vector auto-regression, granger causality
Procedia PDF Downloads 6329824 Examining the Predicting Effect of Mindfulness on Psychological Well-Being among Undergraduate Students
Authors: Piyanee Klainin-Yobas, Debbie Ramirez, Zenaida Fernandez, Jenneth Sarmiento, Wareerat Thanoi, Jeanette Ignacio, Ying Lau
Abstract:
In many countries, university students experience various stressors that may negatively affect their psychological well-being (PWB). Hence, they are at risk for physical and mental problems. This research aimed to examine the predicting effects of mindfulness, self-efficacy, and social support on psychological well-being among undergraduate students. A non-experimental research was conducted at a university in the Philippines. All students enrolled in undergraduate programs were eligible for this study unless they had chronic medical or mental health problems. Power analysis was used to calculate an adequate sample size and a convenience sampling of 630 was recruited. Data were collected through online self-reported questionnaires from year 2013 to 2015. All self-reported scales used in this study had sound psychometric properties. Descriptive statistics, correlational analyses, and structural equation modeling were performed to analyze the research data. Results showed that the participants were mostly Filipino, female, Christian, and in Schools of Nursing. Mindfulness, self-efficacy, support from family, support from friends, and support from significant others were significant predictors of psychological well-being. Mindfulness was the strongest predictor of positive psychological well-being whereas self-efficacy was the strongest predictor of negative psychological well-being. In conclusion, findings from this study add knowledge to the existing literature regarding the predictors of psychological well-being. Psychosocial interventions, with the focus on strengthening mindfulness and self-efficacy, could be delivered to undergraduate students to help them enhance psychological well-being. More studies can be undertaken to test the interventions and multi-centered research can be conducted to enhance generalizability of research findings.Keywords: mindfulness, self-efficacy, social support, psychological wellbeing
Procedia PDF Downloads 42629823 Cursive Handwriting in an Internet Age
Authors: Karen Armstrong
Abstract:
Recent concerns about the value of teaching cursive handwriting in the classroom are based on the belief that cursive handwriting or penmanship is an outdated and unnecessary skill in today’s online world. The discussion of this issue begins with a description of current initiatives to eliminate handwriting instruction in schools. This is followed by a brief history of cursive writing through the ages. Next considered is a description of its benefits as a preliminary process for younger children as compared with immediate instruction in keyboarding, particularly in the areas of vision, cognition, motor skills and automatic fluency. Also considered, is cursive’s companion, paper itself, and the impact of a paperless, “screen and keyboard” environment. The discussion concludes with a consideration of the unique contributions of cursive and keyboarding as written forms of communication, along with their respective surfaces, paper and screen. Finally, an assessment of the practical utility of each skill is followed by an informal assessment of what is lost and what remains as we move from a predominantly paper and pen world of handwriting to texting and keyboarding in an environment of screens.Keywords: asemic writing, cursive, handwriting, keyboarding, paper
Procedia PDF Downloads 27029822 Numerical Simulation of Plasma Actuator Using OpenFOAM
Authors: H. Yazdani, K. Ghorbanian
Abstract:
This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.Keywords: active flow control, flow-field, OpenFOAM, plasma actuator
Procedia PDF Downloads 30629821 A Decision Support System for Flight Disruptions Management
Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı
Abstract:
With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management
Procedia PDF Downloads 31529820 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation
Authors: Vadim Vagin, Marina Fomina, Oleg Morosin
Abstract:
This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization
Procedia PDF Downloads 44229819 Membership Surface and Arithmetic Operations of Imprecise Matrix
Authors: Dhruba Das
Abstract:
In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.Keywords: imprecise number, imprecise vector, membership surface, imprecise matrix
Procedia PDF Downloads 38629818 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9129817 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest
Procedia PDF Downloads 18829816 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 23029815 The Need for a Tool to Support Users of E-Science Infrastructures in a Virtual Laboratory Environment
Authors: Hashim Chunpir
Abstract:
Support processes play an important role to facilitate researchers (users) to accomplish their research activities with the help of cyber-infrastructure(s). However, the current user-support process in cyber-infrastructure needs a feasible tool to support users. This tool must enable the users of a cyber-infrastructure to communicate efficiently with the staffs of a cyber-infrastructure in order to get technical and scientific assistance, whilst saving resources at the same time. This research paper narrates the real story of employing various forms of tools to support the user and staff communication. In addition, this paper projects the lessons learned from an exploration of the help-desk tools in the current state of user support process in Earth System Grid Federation (ESGF) from support staffs’ perspective. ESGF is a climate cyber-infrastructure that facilitates Earth System Modeling (ESM) and is taken as a case study in this paper. Finally, this study proposes a need for a tool, a framework or a platform that not only improves the user support process to address support servicing needs of end-users of e-Science infrastructures but also eases the life of staffs in providing assistance to the users. With the help of such a tool; the collaboration between users and the staffs of cyber-infrastructures is made easier. Consequently, the research activities of the users of e-Science infrastructure will thrive as the scientific and technical support will be available to users. Finally, this results into painless and productive e-Research.Keywords: e-Science User Services, e-Research in Earth Sciences, Information Technology Services Management (ITSM), user support process, service desk, management of support activities, help desk tools, application of social media
Procedia PDF Downloads 47329814 Possibilistic Aggregations in the Investment Decision Making
Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze
Abstract:
This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty
Procedia PDF Downloads 55829813 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow
Authors: Mona Hoyng
Abstract:
In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.Keywords: gameful experience, instructional support, group engagement, flow, education, learning
Procedia PDF Downloads 13629812 Compare the Effectiveness of Web Based and Blended Learning on Paediatric Basic Life Support
Authors: Maria Janet, Anita David, P. Vijayasamundeeswarimaria
Abstract:
Introduction: The main purpose of this study is to compare the effectiveness of web-based and blended learning on Paediatric Basic Life Support on competency among undergraduate nursing students in selected nursing colleges in Chennai. Materials and methods: A descriptive pre-test and post-test study design were used for this study. Samples of 100 Fourth year B.Sc., nursing students at Sri Ramachandra Faculty of Nursing SRIHER, Chennai, 100 Fourth year B.Sc., nursing students at Apollo College of Nursing, Chennai, were selected by purposive sampling technique. The instrument used for data collection was Knowledge Questionnaire on Paediatric Basic Life Support (PBLS). It consists of 29 questions on the general expansion of Basic Life Support and Cardiopulmonary Resuscitation, Prerequisites of Basic Life Support, and Knowledge on Paediatric Basic Life Support in which each question has four multiple choices answers, each right answer carrying one mark and no negative scoring. This questionnaire was formed with reference to AHA 2020 (American Heart Association) revised guidelines. Results: After the post-test, in the web-based learning group, 58.8% of the students had an inadequate level of objective performance score, while 41.1% of them had an adequate level of objective performance score. In the blended learning group, 26.5% of the students had an inadequate level of an objective performance score, and 73.4% of the students had an adequate level of an objective performance score. There was an association between the post-test level of knowledge and the demographic variables of undergraduate nursing students undergoing blended learning. The age was significant at a p-value of 0.01, and the performance of BLS before was significant at a p-value of 0.05. The results show that there was a significant positive correlation between knowledge and objective performance score of undergraduate nursing students undergoing web-based learning on paediatric basic life support.Keywords: basic life support, paediatric basic life support, web-based learning, blended learning
Procedia PDF Downloads 6929811 Job Characteristics, Emotion Regulation and University Teachers' Well-Being: A Job Demands-Resources Analysis
Authors: Jiying Han
Abstract:
Teaching is widely known to be an emotional endeavor, and teachers’ ability to regulate their emotions is important for their well-being and the effectiveness of their classroom management. Considering that teachers’ emotion regulation is an underexplored issue in the field of educational research, some studies have attempted to explore the role of emotion regulation in teachers’ work and to explore the links between teachers’ emotion regulation, job characteristics, and well-being, based on the Job Demands-Resources (JD-R) model. However, those studies targeted primary or secondary teachers. So far, very little is known about the relationships between university teachers’ emotion regulation and its antecedents and effects on teacher well-being. Based on the job demands-resources model and emotion regulation theory, this study examined the relationships between job characteristics of university teaching (i.e., emotional job demands and teaching support), emotion regulation strategies (i.e., reappraisal and suppression), and university teachers’ well-being. Data collected from a questionnaire survey of 643 university teachers in China were analysed. The results indicated that (1) both emotional job demands and teaching support had desirable effects on university teachers’ well-being; (2) both emotional job demands and teaching support facilitated university teachers’ use of reappraisal strategies; and (3) reappraisal was beneficial to university teachers’ well-being, whereas suppression was harmful. These findings support the applicability of the job demands-resources model to the contexts of higher education and highlight the mediating role of emotion regulation.Keywords: emotional job demands, teaching support, emotion regulation strategies, the job demands-resources model
Procedia PDF Downloads 15729810 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data
Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis
Abstract:
Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction
Procedia PDF Downloads 58929809 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools
Abstract:
Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design
Procedia PDF Downloads 12129808 Decision Support System in Air Pollution Using Data Mining
Authors: E. Fathallahi Aghdam, V. Hosseini
Abstract:
Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.Keywords: data mining, clustering, air pollution, crisp approach
Procedia PDF Downloads 42729807 Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes
Authors: Mamyrbek A. Beisenbi, Nurgul M. Kissikova, Saltanat E. Beisembina, Salamat T. Suleimenova, Samal A. Kaliyeva
Abstract:
The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system.Keywords: gradient-velocity method of Lyapunov vector-functions, hyperbolic umbilic, self-organizing control system, stability
Procedia PDF Downloads 13729806 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures
Authors: Francesca Marsili
Abstract:
The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures
Procedia PDF Downloads 33729805 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 37829804 Decision Support System for Tourism in Northern Part of Thailand
Authors: Katejarinporn Chaiya, Thawit Janbanklong
Abstract:
The purposes of this study were to design and find users’ satisfaction after using the decision support system for tourism in the Northern part of Thailand, which can provide tourists with touristic information and plan their personal voyage. Such information can be retrieved systematically based on personal budget and provinces. The samples of this study were five experts and users: 30 "white collars" in Bangkok. This decision support system was designed via ASP.NET. Its database was developed by using MySQL, for administrators to effectively manage the database. The application outcome revealed that the innovation works properly as sought in objectives. Specialists and white collars in Bangkok have evaluated the decision support system; the result was satisfactorily positive.Keywords: decision Support System, ASP.NET, MySQL, white collars
Procedia PDF Downloads 35829803 Innovative Screening Tool Based on Physical Properties of Blood
Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan
Abstract:
This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability
Procedia PDF Downloads 37629802 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 100