Search results for: robot force control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12694

Search results for: robot force control

12154 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation

Procedia PDF Downloads 623
12153 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure

Procedia PDF Downloads 491
12152 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics

Authors: Adam J. Bowen

Abstract:

Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.

Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction

Procedia PDF Downloads 100
12151 The Political Economy of Police Corruption in Nigeria

Authors: Tosin Osasona

Abstract:

The Nigeria Police Force bears the constitutional mandate as the primary policing agency for the protection of life and property within Nigeria; however, the police have an historical ill-reputation for corruption, ineptitude and impunity. Using the institutional theory of police as the framework of analysis, the paper argues that the performance of the police in Nigeria mirrors the dominant political, social and economic institutions and the structural environment of the Nigerian state. The article puts in perspective the deliberate political decision to underfund the police, leaving officers of the force the extra task of foraging for funds to undertake the duty that the Nigeria state primarily exists for; the article further explores the nexus between corruption in the police in Nigeria and the issue of funding. The article finds that the Nigerian state, by deliberately under-funding the police, while expecting the agency to perform its duties, has indirectly sanctioned the corruption of the force and approved the cooption of the institution of police and policing for private use in Nigeria.

Keywords: Police Corruption, Funding , Informal Taxation, POlice Checkpoint

Procedia PDF Downloads 142
12150 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 336
12149 A Gender Sensitive Labour Policy for Gilgit Baltistan

Authors: Ayesha Obaid, Abdur Rehman Cheema

Abstract:

This study is about understanding the role of the gender division of work that has been assigned to men and women in different societies and cultures and its impact on labour force participation through economic development. Development in Gilgit Baltistan has been challenging due to its geographical conditions and the human development indicators are lower than the rest of the Pakistan. Various socioeconomic factors are identified that play an important role in determining the choices and roles men and women undertake for contributing towards the labour force. Our research highlights the areas lagging behind in gender equality in the labour market. The availability and access of gender over these socioeconomic resources determine gender mainstreaming in the labour market. It is a need of time that gender gaps should be addressed at the grass root level by the policy makers to enhance the growth and improve human development indicators.

Keywords: gender division of work, human development, indicators of socioeconomic factors, labour force

Procedia PDF Downloads 342
12148 The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control

Authors: Sheren H. Salah, Ahmed Y. Ben Sasi

Abstract:

The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.

Keywords: inverted pendulum (IP), proportional-integral derivative (PID), sliding mode control (SMC), systems and control engineering

Procedia PDF Downloads 574
12147 A Full-Scale Test of Coping-Girder Integrated Bridge

Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An

Abstract:

Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.

Keywords: coping, crack, integrated bridge, full-scale test

Procedia PDF Downloads 432
12146 Rounded-off Measurements and Their Implication on Control Charts

Authors: Ran Etgar

Abstract:

The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.

Keywords: inaccurate measurement, SPC, statistical process control, rounded-off, control chart

Procedia PDF Downloads 10
12145 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 65
12144 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces

Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala

Abstract:

It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.

Keywords: particle dispersion, capillary force, viscous drag, oscillations

Procedia PDF Downloads 358
12143 Cooperative Robot Application in a Never Explored or an Abandoned Sub-Surface Mine

Authors: Michael K. O. Ayomoh, Oyindamola A. Omotuyi

Abstract:

Autonomous mobile robots deployed to explore or operate in a never explored or an abandoned sub-surface mine requires extreme effectiveness in coordination and communication. In a bid to transmit information from the depth of the mine to the external surface in real-time and amidst diverse physical, chemical and virtual impediments, the concept of unified cooperative robots is seen to be a proficient approach. This paper presents an effective [human → robot → task] coordination framework for effective exploration of an abandoned underground mine. The problem addressed in this research is basically the development of a globalized optimization model premised on time series differentiation and geometrical configurations for effective positioning of the two classes of robots in the cooperation namely the outermost stationary master (OSM) robots and the innermost dynamic task (IDT) robots for effective bi-directional signal transmission. In addition, the synchronization of a vision system and wireless communication system for both categories of robots, fiber optics system for the OSM robots in cases of highly sloppy or vertical mine channels and an autonomous battery recharging capability for the IDT robots further enhanced the proposed concept. The OSM robots are the master robots which are positioned at strategic locations starting from the mine open surface down to its base using a fiber-optic cable or a wireless communication medium all subject to the identified mine geometrical configuration. The OSM robots are usually stationary and function by coordinating the transmission of signals from the IDT robots at the base of the mine to the surface and in a reverse order based on human decisions at the surface control station. The proposed scheme also presents an optimized number of robots required to form the cooperation in a bid to reduce overall operational cost and system complexity.

Keywords: sub-surface mine, wireless communication, outermost stationary master robots, inner-most dynamic robots, fiber optic

Procedia PDF Downloads 204
12142 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 87
12141 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 458
12140 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 98
12139 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure

Procedia PDF Downloads 507
12138 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 306
12137 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.

Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor

Procedia PDF Downloads 253
12136 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process

Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim

Abstract:

Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.

Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing

Procedia PDF Downloads 295
12135 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amir Reza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: tsunami, bridge, horizontal force, uplift force

Procedia PDF Downloads 287
12134 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 474
12133 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 97
12132 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 477
12131 Reductions of Control Flow Graphs

Authors: Robert Gold

Abstract:

Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.

Keywords: control flow graph, graph reduction, software engineering, software applications

Procedia PDF Downloads 536
12130 Fast Terminal Synergetic Converter Control

Authors: Z. Bouchama, N. Essounbouli, A. Hamzaoui, M. N. Harmas

Abstract:

A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability.

Keywords: dc-dc buck converter, synergetic control, finite time convergence, terminal synergetic control, fast terminal synergetic control, Lyapunov

Procedia PDF Downloads 447
12129 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science

Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe

Abstract:

Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.

Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction

Procedia PDF Downloads 86
12128 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)

Authors: Philipp Zopf, Franz Haas

Abstract:

Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.

Keywords: drilling, machining, milling, ultrasonic

Procedia PDF Downloads 260
12127 Kinematic Analysis of Human Gait for Typical Postures of Walking, Running and Cart Pulling

Authors: Nupur Karmaker, Hasin Aupama Azhari, Abdul Al Mortuza, Abhijit Chanda, Golam Abu Zakaria

Abstract:

Purpose: The purpose of gait analysis is to determine the biomechanics of the joint, phases of gait cycle, graphical and analytical analysis of degree of rotation, analysis of the electrical activity of muscles and force exerted on the hip joint at different locomotion during walking, running and cart pulling. Methods and Materials: Visual gait analysis and electromyography method has been used to detect the degree of rotation of joints and electrical activity of muscles. In cinematography method an object is observed from different sides and takes its video. Cart pulling length has been divided into frames with respect to time by using video splitter software. Phases of gait cycle, degree of rotation of joints, EMG profile and force analysis during walking and running has been taken from different papers. Gait cycle and degree of rotation of joints during cart pulling has been prepared by using video camera, stop watch, video splitter software and Microsoft Excel. Results and Discussion: During the cart pulling the force exerted on hip is the resultant of various forces. The force on hip is the vector sum of the force Fg= mg, due the body of weight of the person and Fa= ma, due to the velocity. Maximum stance phase shows during cart pulling and minimum shows during running. During cart pulling shows maximum degree of rotation of hip joint, knee: running, and ankle: cart pulling. During walking, it has been observed minimum degree of rotation of hip, ankle: during running. During cart pulling, dynamic force depends on the walking velocity, body weight and load weight. Conclusions: 80% people suffer gait related disease with increasing their age. Proper care should take during cart pulling. It will be better to establish the gait laboratory to determine the gait related diseases. If the way of cart pulling is changed i.e the design of cart pulling machine, load bearing system is changed then it would possible to reduce the risk of limb loss, flat foot syndrome and varicose vein in lower limb.

Keywords: kinematic, gait, gait lab, phase, force analysis

Procedia PDF Downloads 568
12126 Simulation and Analysis of Inverted Pendulum Controllers

Authors: Sheren H. Salah

Abstract:

The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.

Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)

Procedia PDF Downloads 544
12125 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 371