Search results for: release kinetic study
50664 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds
Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi
Abstract:
Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release
Procedia PDF Downloads 7950663 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines
Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin
Abstract:
Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.Keywords: flammable zones, gas pipelines, numerical simulation, wind effects
Procedia PDF Downloads 17150662 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24
Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas
Abstract:
Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule
Procedia PDF Downloads 28250661 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water
Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates
Abstract:
The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.Keywords: environment, fiber, petroleum, sorption
Procedia PDF Downloads 12750660 Glenoid Osteotomy with Various Tendon Transfers for Brachial Plexus Birth Palsy: Clinical Outcomes
Authors: Ramin Zargarbashi, Hamid Rabie, Behnam Panjavi, Hooman Kamran, Seyedarad Mosalamiaghili, Zohre Erfani, Seyed Peyman Mirghaderi, Maryam Salimi
Abstract:
Background: Posterior shoulder dislocation is one of the disabling complications of brachial plexus birth injury (BPBI), and various treatment options, including capsule and surrounding muscles release for open reduction, humeral derotational osteotomy, and tendon transfers, have been recommended to manage it. In the present study, we aimed to determine the clinical outcome of open reduction with soft tissue release, tendon transfer, and glenoid osteotomy inpatients with BPBI and posterior shoulder dislocation or subluxation. Methods: From 2018 to 2020, 33 patients that underwent open reduction, glenoid osteotomy, and tendon transfer were included. The glenohumeral deformity was classified according to the Waters radiographic classification. Functional assessment was performed using the Mallet grading system before and at least two years after the surgery. Results: The patients were monitored for 26.88± 5.47 months. Their average age was 27.5±14 months. Significant improvement was seen in the overall Mallet score (from 13.5 to 18.91 points) and its segments, including hand to mouth, hand to the neck, global abduction, global external rotation, abduction degree, and external rotation degree. Hand-to-back score and the presence of trumpet sign were significantly decreased in the post-operation phase (all p values<0.001). The above-mentioned variables significantly changed for both infantile and non-infantile dislocations. Conclusion: Our study demonstrated that open reduction along with glenoid osteotomy improves retroversion, and muscle strengthening with different muscle transfers is an effective technique for BPBI.Keywords: birth injuries, nerve injury, brachial plexus birth palsy, Erb palsy, tendon transfer
Procedia PDF Downloads 10050659 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property
Authors: Neha Verma, Manik Rakhra
Abstract:
Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor
Procedia PDF Downloads 15950658 Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide
Authors: Mohamed Gar Alalm, Ahmed Tawfik
Abstract:
In this study, photo-catalytic degradation of phenol by titanium dioxide (TiO2) in aqueous solution was evaluated. The UV energy of solar light was utilized by compound parabolic collectors (CPCs) technology. The effect of irradiation time, initial pH, and dosage of TiO2 were investigated. Aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. 94.5% degradation efficiency of phenol was achieved after 150 minutes of irradiation when the initial concentration was 100 mg/L. The dosage of TiO2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 5.2. Phenol photo-catalytic degradation fitted to the pseudo-first order kinetic according to Langmuir–Hinshelwood model.Keywords: compound parabolic collectors, phenol, photo-catalytic, titanium dioxide
Procedia PDF Downloads 41250657 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 14650656 Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia
Authors: Diemas Purnama Muhammad Firman Pratama, Denny Maulana Malik
Abstract:
Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water.Keywords: Jatigede Dam, Cisampih village, water seepage, soil quality
Procedia PDF Downloads 38050655 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece
Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos
Abstract:
The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.Keywords: Greece, heavy metals, mining, pollution
Procedia PDF Downloads 13350654 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles
Authors: Shuba Anastasiia, Kuchmenko Tatiana, Umarkhanov Ruslan
Abstract:
The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents do not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.Keywords: piezoquartz sensor, viscous sorbents, micellar casein, coating, volatile compounds
Procedia PDF Downloads 12950653 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties
Authors: Parikshit Gogo, N. N. Dutta
Abstract:
The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.Keywords: laccase, catechin, conjugation reaction, antioxidant properties
Procedia PDF Downloads 27250652 Preparation and Characterization of Anti-Acne Dermal Products Based on Erythromycin β-Cyclodextrin Lactide Complex
Authors: Lacramioara Ochiuz, Manuela Hortolomei, Aurelia Vasile, Iulian Stoleriu, Marcel Popa, Cristian Peptu
Abstract:
Local antibiotherapy is one of the most effective acne therapies. Erythromycin (ER) is a macrolide antibiotic topically administered for over 30 years in the form of gel, ointment or hydroalcoholic solution for the acne therapy. The use of ER as a base for topical dosage forms raises some technological challenges due to the physicochemical properties of this substance. The main disadvantage of ER is the poor water solubility (2 mg/mL) that limits both formulation using hydrophilic bases and skin permeability. Cyclodextrins (CDs) are biocompatible cyclic oligomers of glucose, with hydrophobic core and hydrophilic exterior. CDs are used to improve the bioavailability of drugs by increasing their solubility and/or their rate of dissolution after including the poorly water soluble substances (such as ER) in the hydrophobic cavity of CDs. Adding CDs leads to the increase of solubility and improved stability of the drug substance, increased permeability of substances of low water solubility, decreased toxicity and even to active dose reduction as a result of increased bioavailability. CDs increase skin tolerability by reducing the irritant effect of certain substances. We have included ER to lactide modified β-cyclodextrin, in order to improve the therapeutic effect of topically administered ER. The aims of the present study were to synthesise and describe a new complex with prolonged release of ER with lactide modified β-cyclodextrin (CD-LA_E), to investigate the CD-LA_E complex by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), to analyse the effect of semisolid base on the in vitro and ex vivo release characteristics of ER in the CD-LA_E complex by assessing the permeability coefficient and the release kinetics by fitting on mathematical models. SEM showed that, by complexation, ER changes its crystal structure and enters the amorphous phase. FTIR analysis has shown that certain specific bands of some groups in the ER structure move during the incapsulation process. The structure of the CD-LA_E complex has a molar ratio of 2.12 to 1 between lactide modified β-cyclodextrin and ER. The three semisolid bases (2% Carbopol, 13% Lutrol 127 and organogel based on Lutrol and isopropyl myristate) show a good capacity for incorporating the CD-LA_E complex, having a content of active ingredient ranging from 98.3% to 101.5% as compared to the declared value of 2% ER. The results of the in vitro dissolution test showed that the ER solubility was significantly increased by CDs incapsulation. The amount of ER released from the CD-LA_E gels was in the range of 76.23% to 89.01%, whereas gels based on ER released a maximum percentage of 26.01% ER. The ex vivo dissolution test confirms the increased ER solubility achieved by complexation, and supports the assumption that the use of this process might increase ER permeability. The highest permeability coefficient was obtained in ER released from gel based on 2% Carbopol: in vitro 33.33 μg/cm2/h, and ex vivo 26.82 μg/cm2/h, respectively. The release kinetics of complexed ER is performed by Fickian diffusion, according to the results obtained by fitting the data in the Korsmeyer-Peppas model.Keywords: erythromycin, acne, lactide, cyclodextrin
Procedia PDF Downloads 26950651 Theoretical and Experimental Study on the NO Reduction by H₂ over Char Decorated with Ni at low Temperatures
Authors: Kaixuan Feng, Ruixiang Lin, Yuyan Hu, Yuheng Feng, Dezhen Chen, Tongcheng Cao
Abstract:
In this study, we propose a reaction system for the low-temperature reduction of NO by H₂ on carbon-based materials decorated with 5%wt. Ni. This cost-effective catalyst system efficiently utilizes pyrolysis carbon-based materials and waste hydrogen. Additionally, it yields environmentally friendly products without requiring extra heat sources in practical SCR devices. Density functional theory elucidates the mechanism of NO heterogeneous reduction by H₂ on Ni-decorated char surfaces. Two distinct reaction paths were identified, one involving the intermediate product N₂O and the other not. These pathways exhibit different rate-determination steps and activation energies. Kinetic analysis indicates that the N₂O byproduct pathway has a lower activation energy. Experimental results corroborate the theoretical findings. Thus, this research enhances our mechanistic understanding of the NO-H₂ reaction over char and offers insights for optimizing catalyst design in low-temperature NO reduction.Keywords: char-based catalysis, NO reduction, DFT study, heterogeneous reaction, low-temperature H₂-reduction
Procedia PDF Downloads 8450650 Beta-Cyclodextrin Inclusion Complexes for Antifungal Food Packaging Applications
Authors: Cristina Munoz-Shuguli, Francisco Rodriguez, Julio Bruna, M. Jose Galotto, Abel Guarda
Abstract:
The microbial contamination in fruits due to the presence of fungal is the most important cause of their deterioration and loss. The development of active food packaging materials with antifungal properties has been proposed as an innovative strategy in order to prevent this problem. In this way, natural compounds as the essential oils or their derivatives, also called volatile compounds (VC), can be incorporated in the food packaging materials to control the fungal growth during fruit packaging. However, if the VC is incorporated directly in the packaging material, it is released very fast due to VC high volatility. For this reason, the formation of inclusion complexes through the encapsulation of VC into beta-cyclodextrin (β-CD) and their incorporation in package materials is an alternative to maintain an antifungal atmosphere around the packaged fruits for longer times. In this context, the aim of this work was to develop inclusion complexes based in β-CD and VC (β-CD:VC) for further application in the antifungal food packaging materials development. β-CD:VC inclusion complexes were obtained with two different molar ratios 2:1 and 1:1, through co-precipitation method. The entrapment efficiency of β-CD:VC as well the release of antifungal compound from inclusion complexes exposed to different relative humidity (25, 50, and 97 %) to headspace were determined by gaseous chromatography (GC). Also, thermal and antimicrobial properties of β-CD:VC were determined through thermogravimetric analysis (TGA) and antifungal assays against Botrytis cinerea, respectively. GC results showed that β-CD:VC 2:1 had a higher entrapment efficiency than β-CD:VC 1:1, with values of 75.5 ± 3.71 % and 59.6 ± 1.51 %, respectively. It was probably because during the synthesis of β-CD:VC 1:1, there was less molecular space to the movement of VC molecules. Furthermore, the release of VC from β-CD:VC was directly related with the relative humidity. High amount of VC was released when the inclusion complexes were exposed to high humidity, possibly due to the interactions between the water molecules and the β-CD hydrophilic wall. On the other hand, a better thermal stability of VC in inclusion complexes allowed to verify its effective encapsulation into β-CD. Finally, antimicrobial assays showed that the inclusion complexes had a high antifungal activity at very low concentrations. Therefore, the results obtained in this work allow suggesting the β-CD:VC inclusion complexes as potential candidates to the development of fruit antifungal packaging materials, which activity is relative humidity dependent.Keywords: Botrytis cinerea, fruit packaging, headspace release, volatile compounds
Procedia PDF Downloads 12550649 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 22550648 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis
Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy
Abstract:
Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery
Procedia PDF Downloads 39850647 Studies on Induction of Cytotoxicity Through Apoptosis In Ovarian Cancer Cell Line (CAOV-3) by Chloroform Extract of Artocarpus Kemando Miq
Authors: Noor Shafifiyaz Mohd Yazid, Najihah Mohd Hashim, Hapipah Mohd Ali, Syam Mohan, Rosea Go
Abstract:
Artocarpus kemando is a plant species from Moraceae family. This plant is used as household utensil by the local and the fruits are edible. The plants’ bark was used for the extraction process and yielded the chloroform crude extract which was used to screen for anticancer potential. The cytotoxic effect of the extract on CAOV-3 and WRL 68 cell lines were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assays. Qualitative AO/PI assay was performed to confirm the apoptosis and necrosis process. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. In MTT assay, A. kemando inhibited 50% growth of CAOV-3 cells at 27.9 ± 0:03, 20.1± 0:03, 18.21± 0:04 µg/mL after 24, 48 and 72 hour, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with extract resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated A. kemando has potentially anticancer agent, particularly on human ovarian cancer.Keywords: anticancer, Artocarpus kemando, ovarian cancer, cytotoxicity
Procedia PDF Downloads 55550646 Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers
Authors: Leila Tabrizi, Farnaz Dezhaboun
Abstract:
In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend.Keywords: drying kinetic, medicinal plant, organic fertilizer, phytochemical criteria
Procedia PDF Downloads 33850645 Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity
Authors: E. M. Hoballah, M. Saber, A. Turky, N. Awad, A. M. Zaghloul
Abstract:
Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil.Keywords: remediation, potential toxic elements, soil biomass, sewage
Procedia PDF Downloads 23150644 Proniosomes as a Carrier for Ocular Drug Delivery
Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy
Abstract:
Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes
Procedia PDF Downloads 23150643 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes
Authors: R. P. Hewawasam, A. F. Dulhunty
Abstract:
The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2
Procedia PDF Downloads 28750642 Computational Agent-Based Approach for Addressing the Consequences of Releasing Gene Drive Mosquito to Control Malaria
Authors: Imran Hashmi, Sipkaduwa Arachchige Sashika Sureni Wickramasooriya
Abstract:
Gene-drive technology has emerged as a promising tool for disease control by influencing the population dynamics of disease-carrying organisms. Various gene drive mechanisms, derived from global laboratory experiments, aim to strategically manage and prevent the spread of targeted diseases. One prominent strategy involves population replacement, wherein genetically modified mosquitoes are introduced to replace the existing local wild population. To enhance our understanding and aid in the design of effective release strategies, we employ a comprehensive mathematical model. The utilized approach employs agent-based modeling, enabling the consideration of individual mosquito attributes and flexibility in parameter manipulation. Through the integration of an agent-based model and a meta-population spatial approach, the dynamics of gene drive mosquito spreading in a released site are simulated. The model's outcomes offer valuable insights into future population dynamics, providing guidance for the development of informed release strategies. This research significantly contributes to the ongoing discourse on the responsible and effective implementation of gene drive technology for disease vector control.Keywords: gene drive, agent-based modeling, disease-carrying organisms, malaria
Procedia PDF Downloads 6950641 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery
Authors: Yogita Patil-Sen
Abstract:
Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery
Procedia PDF Downloads 34150640 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery
Authors: S. S. Patil, R. M. Mhetre, S. V. Patil
Abstract:
Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method
Procedia PDF Downloads 53150639 Excessive Recruitment of Neutrophils and Elastase Release in Emphysema and COPD; Effect of Natural Protease Inhibitors
Authors: Rachid Kacem
Abstract:
Excessive recruitment of Neutrophils into the lungs is a hallmark of several chronic inflammatory disorders such as emphysema and COPD. The resulting of this recruitment is the pathogenesis of lungs which is characterized by an imbalance between leukocyte serine proteinases mainly neutrophil elastase and the physiological inhibitors. The development of emphysema and remodeling of airway tissue occurred when neutrophil migrate into the lungs with more release of elastase and other proteolytic enzymes. Many reports have demonstrated that the extracts from medicinal plants such as Nigella sativa (L.) seeds extracts have anti-elastase activity; this is mainly due to the enrichment of the extracts with many bioactive molecules mainly phenolic compounds. Neutrophil serine proteases including human neutrophil elastase are involved in many inflammatory diseases, such as chronic obstructive pulmonary disease and emphysema. Since the current therapies for these diseases are inadequate and have numerous adverse effects, there is an acute need of potential alternative therapies. The natural protease inhibitors have received increasing attention as useful tools for potential utilization in pharmacology. This work is elucidating the most important natural phenolic substances that have been reported recently for their effectiveness as natural anti-elastase molecules, and hence, to the possibility of their use in the field of pharmaceuticals.Keywords: medicinal plants, phenols, elastase, anti-elastase, chronic obstructive pulmonary disease, COPD, emphysema
Procedia PDF Downloads 42050638 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints
Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia
Abstract:
Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior
Procedia PDF Downloads 21750637 A New Formulation Of The M And M-theta Integrals Generalized For Virtual Crack Closure In A Three-dimensional Medium
Authors: Loïc Chrislin Nguedjio, S. Jerome Afoutou, Rostand Moutou Pitti, Benoit Blaysat, Frédéric Dubois, Naman Recho, Pierre Kisito Talla
Abstract:
The safety and durability of structures remain challenging fields that continue to draw the attention of designers. One widely adopted approach is fracture mechanics, which provides methods to evaluate crack stability in complex geometries and under diverse loading conditions. The global energy approach is particularly comprehensive, as it calculates the energy release rate required for crack initiation and propagation using path-independent integrals. This study aims to extend these invariant integrals to include path-independent integrals, with the goal of enhancing the accuracy of failure predictions. The ultimate objective is to create more robust materials while optimizing structural safety and durability. By integrating the real and virtual field method with the virtual crack closure technique, a new formulation of the M-integral is introduced. This formulation establishes a direct relationship between local stresses on the crack faces and the opening displacements, allowing for an accurate calculation of fracture energy. The analytical calculations are grounded in the assumption that the energy needed to close a crack virtually is equal to the energy released during its opening. This novel integral is implemented in a finite element code using Cast3M to simulate cracking criteria within a wood material context. Initially, the numerical calculations are focused on plane strain conditions, but they are later extended to three-dimensional environments, taking into account the orthotropic nature of wood.Keywords: energy release rate, path-independent integrals, virtual crack closure, orthotropic material
Procedia PDF Downloads 1650636 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications
Authors: Debajyoti Bose
Abstract:
Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.Keywords: fungi, chitosan, enzyme, nanocapsule
Procedia PDF Downloads 50950635 Smart and Active Package Integrating Printed Electronics
Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares
Abstract:
In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic
Procedia PDF Downloads 113