Search results for: outcome and future
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9154

Search results for: outcome and future

8614 Developing Fuzzy Logic Model for Reliability Estimation: Case Study

Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed

Abstract:

The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.

Keywords: fuzzy logic, reliability, repairable systems, FMEA

Procedia PDF Downloads 614
8613 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK

Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina

Abstract:

Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.

Keywords: attitude, expectations, industry needs, knowledge, skills

Procedia PDF Downloads 125
8612 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 268
8611 Effects of Modified Low-Dye Taping on First Ray Mobility Test and Sprint Time

Authors: Yu-Ju Tsai, Ching-Chun Wang, Wen-Tzu Tang, Huei-Ming Chai

Abstract:

A pronated foot is frequently associated with a hypermobile first ray, then developing further severe foot problems. Low-Dye taping with athletic tape has been widely used to restrict excessive first ray motion and re-build height of the medial longitudinal arch in general population with pronated foot. It is not the case, however, for sprinters since they feel too much restriction of foot motions. Currently, the kinesio tape, more elastic than the athletic tape, has been widely used to re-adjust joint positions. It was interesting whether modified low-Dye taping using kinesio tape was beneficial for altering first ray mobility and still giving enough arch support. The purpose of this study was to investigate the effect of modified low-Dye taping on first ray mobility test and 60-m sprint time for sprinters with pronated foot. The significance of this study provides new insight into a treatment alternative of modified low-Dye taping for sprinter with pronated foot. Ten young male sprinters, aged 20.8±1.6 years, with pronated foot were recruited for this study. The pronated foot was defined as the foot that the navicular drop test was greater than 1.0 cm. Three optic shutters were placed at the start, 30-m, and 60-m sites to record sprint time. All participants were asked to complete 3 trials of the 60-m dash with both taping and non-taping conditions in a random order. The low-Dye taping was applied using the method postulated by Ralph Dye in 1939 except the kinesio tape was used instead. All outcome variables were recorded for taping and non-taping conditions. Paired t-tests were used to analyze all outcome variables between 2 conditions. Although there were no statistically significant differences in dorsal and plantar mobility between taping and non-taping conditions, a statistical significance was found in a total range of motion (dorsiflexion plus plantarflexion angle) of the first ray when a modified low-Dye taping was applied (p < 0.05). Time to complete 60-m sprint was significantly increased with low-Dye taping (p < 0.05) while no significance was found for time to 30-m. it indicated that modified low-Dye taping changed maximum sprint speed of 60-m dash. Conclusively, modified low-Dye taping was capable of increasing first ray mobility and further altered maximum sprint speed.

Keywords: first ray mobility, kinesio taping, pronated foot, sprint time

Procedia PDF Downloads 277
8610 COVID-19, Employee Perspectives, and the Shifting Nature of Work

Authors: Jonathan H. Westover, Maureen S. Andrade, Angela Schill, Jeff Peterson, Samuel Choi

Abstract:

The purpose of this research is to understand employee perspectives on their work characteristics and conditions, particularly related to the COVID-19 pandemic and the future of work. Working conditions impact job satisfaction. People tend to measure job satisfaction by comparing aspects of the job they have with those they want. Job satisfaction is related to the value that one places on specific aspects of a job, such as autonomy, pay and benefits, challenge, growth, or meaningful work, and the degree to which such elements are present. The value one places on these various job characteristics may differ based on gender, age, personality, occupation, context, or other factors. This study will examine various job characteristics and working conditions with an emphasis on COVID-19 to determine how managers and leaders and better support and develop their employees.

Keywords: COVID-19, employee perspectives nature of work, future of work

Procedia PDF Downloads 169
8609 Anatomically-Based Oropharyngeal Rehabilitation for the Patients with Obstructive Sleep Apnea Using a Multilevel Approach

Authors: Hsin-Yu Lin, Ching-Hsia Hung

Abstract:

Obstructive sleep apnea (OSA) is characterized by a complete or partial obstruction of the upper airway during sleep. The vulnerable sites of upper airway collapses are consequences of sleep state-dependent reductions in tone in specific pharyngeal dilators. Clinical examinations reveal multilevel collapses of the upper airway among the patients with OSA. Therefore, an anatomically-based oropharyngeal rehabilitation should comprise a multilevel approach, including retropalatal, retroglossal, hypopharyngeal, temporomandibular, and facial levels, all of which involve different muscle groups and contribute to multifunctional interaction and coordination, such as swallowing, breathing, and phonation. The purpose of the study was to exam the effects of this rehabilitation program with a multilevel approach. In this study, fifteen subjects with newly diagnosed moderate or severe OSA (Apnea-Hypopnea-Index≥15) were randomized into an intervention group and control group. The intervention group (N=8) underwent a 12-week-intervention of a hospital-based rehabilitation program, while the control group (N=7) was kept on the waiting list. The 12-week-intervention comprised an anatomically based multilevel approach. The primary outcome was Polysomnography (PSG) data, and the secondary outcome was oropharyngeal and respiratory muscle function. In the intervention group, Apnea-Hypopnea-Index significantly improved (46.96±19.45 versus 32.78±10.78 events/h, p=0.017) compared with control group (35.77±17.49 versus 42.96±17.32 events/h, p=0.043). While the control group remained no change, the intervention group demonstrated other PSG outcomes significantly improvement, including arousal index (46.04±18.9 versus 32.98±8.35/h, p=0.035), mean SpO2 (92.88±2.1 versus 94.13±1.46%, p=0.039). Besides, the intervention group demonstrated significant improvement in oropharyngeal and respiratory muscle function compared to the control group. This anatomically-based oropharyngeal rehabilitation with a multilevel approach can be proven as a non-invasive therapy for patients with OSA.

Keywords: obstructive sleep apnea, upper airway, oropharyngeal rehabilitation, multilevel approach

Procedia PDF Downloads 102
8608 Food Traceability System: Current State and Future Needs of the Nigerian Poultry and Poultry Product Supply Chain

Authors: Hadiza Kabir Bako, Munir Abba Dandago

Abstract:

The fright of food-borne diseases as a result of animal health across the globe is creating the need for origin confirmation, safety of food and method of identification of food produce within the supply chain. In this paper, we investigated two commercial and one backyard poultry farm; live poultry, poultry meat and egg. We propose various implementation options for the poultry traceability system with respect to trace and track, and food recall and withdrawal requirements. With the intention that farmers, Investors or Regulatory agencies would find it useful for the Nigerian poultry sector and we highlight the future needs and challenges that lie ahead in the two most significant system of poultry production in Nigeria: the commercial poultry and backyard breeding.

Keywords: farm, food safety, food traceability, poultry

Procedia PDF Downloads 193
8607 The Future of Insurance: P2P Innovation versus Traditional Business Model

Authors: Ivan Sosa Gomez

Abstract:

Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.

Keywords: Insurtech, innovation, business model, P2P, insurance

Procedia PDF Downloads 92
8606 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 153
8605 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce

Authors: Sisira Edirippulige

Abstract:

Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.

Keywords: digital health, telehealth, telemedicine, education, curriculum

Procedia PDF Downloads 149
8604 The Importance of Fungi and Plants for a More Sustainable on Our Planet Earth

Authors: Njabe Christelle

Abstract:

Fungal products are essential building blocks for change towards a more sustainable future for our planet. In nature, fungi are special in breaking down plant material by means of a rich spectrum of plant cell wall degrading enzymes. Enzymes serve as catalysts in organic synthesis. Imagine the immense benefits that the known 250000 plant genes might provide in the future through scientific investigation. Plants are the primary basis for human sustenance, used directly for food, clothing, and shelter or indirectly in processed form and through animal feeding. Fungi are the only organisms known to extensively degrade lignin, a major component of wood. Although humans cannot digest cellulose and lignin, many fungi, through their assimilation of these substances, produce food in the form of edible mushrooms.

Keywords: plants, fungi, sustainable use, planet earth

Procedia PDF Downloads 81
8603 Sentiment Analysis of Social Media Responses: A Comparative Study of (NDA) and Indian National Developmental Inclusive Alliance (INDIA) during Indian General Elections 2024

Authors: Pankaj Dhiman, Simranjeet Kaur

Abstract:

This research paper presents a comprehensive sentiment analysis of social media responses to videos on Facebook, YouTube, Twitter, and Instagram during the 2024 Indian general elections. The study focuses on the sentiment patterns of voters towards the National Democratic Alliance (NDA) and The Indian National Developmental Inclusive Alliance (INDIA) on these platforms. The analysis aims to understand the impact of social media on voter sentiment and its correlation with the election outcome. The study employed a mixed-methods approach, combining both quantitative and qualitative methods. With a total of 200 posts analysed during general election-2024 final phase, the sentiment analysis was conducted using natural language processing (NLP) techniques, including sentiment dictionaries and machine learning algorithms. The results show that NDA received significantly more positive sentiment responses across all platforms, with a positive sentiment score of 47% compared to INDIA's score of 38.98 %. The analysis also revealed that Twitter and YouTube were the most influential platforms in shaping voter sentiment, with 60% of the total sentiment score coming from these two platforms. The study's findings suggest that social media sentiment analysis can be a valuable tool for understanding voter sentiment and predicting election outcomes. The results also highlight the importance of social media in shaping public opinion and the need for political parties to engage effectively with voters on these platforms. The study's implications are significant, as they indicate that social media can be a key factor in determining the outcome of elections. The findings also underscore the need for political parties to develop effective social media strategies to engage with voters and shape public opinion.

Keywords: Indian Elections-2024, NDA, INDIA, sentiment analysis, social media, democracy

Procedia PDF Downloads 52
8602 Concussion: Clinical and Vocational Outcomes from Sport Related Mild Traumatic Brain Injury

Authors: Jack Nash, Chris Simpson, Holly Hurn, Ronel Terblanche, Alan Mistlin

Abstract:

There is an increasing incidence of mild traumatic brain injury (mTBI) cases throughout sport and with this, a growing interest from governing bodies to ensure these are managed appropriately and player welfare is prioritised. The Berlin consensus statement on concussion in sport recommends a multidisciplinary approach when managing those patients who do not have full resolution of mTBI symptoms. There are as of yet no standardised guideline to follow in the treatment of complex cases mTBI in athletes. The aim of this project was to analyse the outcomes, both clinical and vocational, of all patients admitted to the mild Traumatic Brain Injury (mTBI) service at the UK’s Defence Military Rehabilitation Centre Headley Court between 1st June 2008 and 1st February 2017, as a result of a sport induced injury, and evaluate potential predictive indicators of outcome. Patients were identified from a database maintained by the mTBI service. Clinical and occupational outcomes were ascertained from medical and occupational employment records, recorded prospectively, at time of discharge from the mTBI service. Outcomes were graded based on the vocational independence scale (VIS) and clinical documentation at discharge. Predictive indicators including referral time, age at time of injury, previous mental health diagnosis and a financial claim in place at time of entry to service were assessed using logistic regression. 45 Patients were treated for sport-related mTBI during this time frame. Clinically 96% of patients had full resolution of their mTBI symptoms after input from the mTBI service. 51% of patients returned to work at their previous vocational level, 4% had ongoing mTBI symptoms, 22% had ongoing physical rehabilitation needs, 11% required mental health input and 11% required further vestibular rehabilitation. Neither age, time to referral, pre-existing mental health condition nor compensation seeking had a significant impact on either vocational or clinical outcome in this population. The vast majority of patients reviewed in the mTBI clinic had persistent symptoms which could not be managed in primary care. A consultant-led, multidisciplinary approach to the diagnosis and management of mTBI has resulted in excellent clinical outcomes in these complex cases. High levels of symptom resolution suggest that this referral and treatment pathway is successful and is a model which could be replicated in other organisations with consultant led input. Further understanding of both predictive and individual factors would allow clinicians to focus treatments on those who are most likely to develop long-term complications following mTBI. A consultant-led, multidisciplinary service ensures a large number of patients will have complete resolution of mTBI symptoms after sport-related mTBI. Further research is now required to ascertain the key predictive indicators of outcome following sport-related mTBI.

Keywords: brain injury, concussion, neurology, rehabilitation, sports injury

Procedia PDF Downloads 157
8601 Interconnections of Circular Economy, Circularity, and Sustainability: A Systematic Review and Conceptual Framework

Authors: Anteneh Dagnachew Sewenet, Paola Pisano

Abstract:

The concept of circular economy, circularity, and sustainability are interconnected and promote a more sustainable future. However, previous studies have mainly focused on each concept individually, neglecting the relationships and gaps in the existing literature. This study aims to integrate and link these concepts to expand the theoretical and practical methods of scholars and professionals in pursuit of sustainability. The aim of this systematic literature review is to comprehensively analyze and summarize the interconnections between circular economy, circularity, and sustainability. Additionally, it seeks to develop a conceptual framework that can guide practitioners and serve as a basis for future research. The review employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. A total of 78 articles were analyzed, utilizing the Scopus and Web of Science databases. The analysis involved summarizing and systematizing the conceptualizations of circularity and its relationship with the circular economy and long-term sustainability. The review provided a comprehensive overview of the interconnections between circular economy, circularity, and sustainability. Key themes, theoretical frameworks, empirical findings, and conceptual gaps in the literature were identified. Through a rigorous analysis of scholarly articles, the study highlighted the importance of integrating these concepts for a more sustainable future. This study contributes to the existing literature by integrating and linking the concepts of circular economy, circularity, and sustainability. It expands the theoretical understanding of how these concepts relate to each other and provides a conceptual framework that can guide future research in this field. The findings emphasize the need for a holistic approach in achieving sustainability goals. The data collection for this review involved identifying relevant articles from the Scopus and Web of Science databases. The selection of articles was made based on predefined inclusion and exclusion criteria. The PRISMA protocol guided the systematic analysis of the selected articles, including summarizing and systematizing their content. This study addressed the question of how circularity is conceptualized and related to both the circular economy and long-term sustainability. It aimed to identify the interconnections between these concepts and bridge the gap in the existing literature. The review provided a comprehensive analysis of the interconnections between the circular economy, circularity, and sustainability. It presented a conceptual framework that can guide practitioners in implementing circular economy strategies and serve as a basis for future research. By integrating these concepts, scholars, and professionals can enhance the theoretical and practical methods in pursuit of a more sustainable future. The findings emphasize the importance of taking a holistic approach to achieve sustainability goals and highlight conceptual gaps that can be addressed in future studies.

Keywords: circularity, circular economy, sustainability, innovation

Procedia PDF Downloads 106
8600 Experimental Pain Study Investigating the Distinction between Pain and Relief Reports

Authors: Abeer F. Almarzouki, Christopher A. Brown, Richard J. Brown, Anthony K. P. Jones

Abstract:

Although relief is commonly assumed to be a direct reflection of pain reduction, it seems to be driven by complex emotional interactions in which pain reduction is only one component. For example, termination of a painful/aversive event may be relieving and rewarding. Accordingly, in this study, whether terminating an aversive negative prediction of pain would be reflected in a greater relief experience was investigated, with a view to separating apart the effects of the manipulation on pain and relief. We use aversive conditioning paradigm to investigate the perception of relief in an aversive (threat) vs. positive context. Participants received positive predictors of a non-painful outcome which were presented within either a congruent positive (non-painful) context or an incongruent threat (painful) context that had been previously conditioned; trials followed by identical laser stimuli on both conditions. Participants were asked to rate the perceived intensity of pain as well as their perception of relief in response to the cue predicting the outcome. Results demonstrated that participants reported more pain in the aversive context compared to the positive context. Conversely, participants reported more relief in the aversive context compares to the neutral context. The rating of relief in the threat context was not correlated with pain reports. The results suggest that relief is not dependant on pain intensity. Consistent with this, relief in the threat context was greater than that in the positive expectancy condition, while the opposite pattern was obtained for the pain ratings. The value of relief in this study is better appreciated in the context of an impending negative threat, which is apparent in the higher pain ratings in the prior negative expectancy compared to the positive expectancy condition. Moreover, the more threatening the context (as manifested by higher unpleasantness/higher state anxiety scores), the more the relief is appreciated. The importance of the study highlights the importance of exploring relief and pain intensity in monitoring separately or evaluating pain-related suffering. The results also illustrate that the perception of painful input may largely be shaped by the context and not necessarily stimulus-related.

Keywords: aversive context, pain, predictions, relief

Procedia PDF Downloads 139
8599 Tourism and Marketing: An Exploration Study to the Strategic Market Analysis of Moses Mabhida Stadium as a Major Tourism Destination in Kwazulu-Natal

Authors: Nduduzo Andrias Ngxongo, Nsizwazikhona Simon Chili

Abstract:

This analytical exploration illustrates how the non-existence of a proper marketing strategy for a tourism destination may have resulted in a radical decline in both financial outputs and visitor arrivals. The marketing strategy is considered as the foundation for any tourism destination’s marketing tactics. Tourism destinations are ought to have dynamic and adaptive marketing strategies that will develop a promotional approach to help the destination to gain market share, identify its target markets, stay relevant to its existing clients, attract new visitors, and increase profits-earned. Accordingly, the Moses Mabhida Stadium (MMS), one of the prominent tourist attractions in KwaZulu-Natal; boasting a world-class architectural design, several international prestigious awards, and vibrant, adventurous activities, has in recent years suffered a gradual slump in both visitors and profits. Therefore, the basis of this paper was to thoroughly establish precisely how the existing MMS marketing strategy may be a basis for a decline in the number of visitors and profits-earned in recent years. The study adopted mixed method research strategy, with 380 participants. The outcome of the study suggests some costly disparities in the marketing strategy of MMS which has led to poor performance and a loss in tourism market share. In consequence, the outcome further suggests that the non-existence of market research analysis and destination marketing tools contributed vastly to the in-progress dilemma. This fact-finding exploration provides a birds-eye outlook of MMS marketing strategy, and based on the results, the study recommends for the introduction of a more far-reaching and revitalising marketing strategy through; constant and persistent market research initiatives, minimal political interference in the administration of state-funded organisations, reassessment of the feasibility study, vigorous, and sourcing of proficient personnel.

Keywords: tourism, destination, marketing , marketing strategy

Procedia PDF Downloads 271
8598 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 107
8597 Fractured Neck of Femur Patients; The Feeding Problems

Authors: F. Christie, M. Staber

Abstract:

Malnutrition is a predictor of poor clinical outcome in the elderly. Up to 60% of hip fracture patients are clinically malnourished on admission. This study assessed the perioperative nutritional state of patients admitted with a proximal femoral fracture and examined if adequate nutritional support was achieved. Methods: Prospective, the observational audit of 30 patients, admitted with a proximal femoral fracture, over a one-month period. We recorded: patient demographics; surgical delay; nutritional state on admission; documentation of Malnutrition Universal Screening Tool (MUST) score; dietician input and daily calorie intake through food charts. The nutritional state was re-assessed weekly and at discharge. The outcome was measured by the length of hospital stay and thirty-day mortality. Results: Mean age 87, M:F 1:2 and all patients were ASA three or four. Five patients (17%) had a prolonged ( >24 hours) fasting period. All patients had a MUST score completed on admission, 27% were underweight and 30% were high risk for malnutrition. Twenty-six patients (87%) were appropriately assessed for dietician referral. Thirteen patients had food charts; on average, hospital meals provided 1500kcal daily. No patient achieved > 75% of the provided calories with 69% of patients achieving 50% or less. Only three patients were started on nutritional supplements. Twenty-three patients (77%) lost weight, averaging 6% weight loss during admission. Mean length of stay (LOS) was 23 days and 30-day mortality 9%. Four patients (13%) gained weight, their mean LOS was 17 days and 30-day mortality 0%. Discussion: Malnutrition in the elderly originates in the community. Following major trauma it’s difficult to reverse nutritional deficits in hospitals. It’s therefore concerning that no high-risk patient achieved their recommended calorie intake. Perioperative optimisation needs to include early nutritional intervention, early anaesthetic review and adjusted anaesthetic techniques to support feeding.

Keywords: trauma, nutrition, neck of femur fracture

Procedia PDF Downloads 327
8596 Outcome of Patients Undergoing Hemicraniectomy for Malignant Middle Cerebral Artery Infarction: A 5 Year Retrospective Study at Perpetual Succour Hospital, Cebu City, Philippines

Authors: Adelson G. Guillarte, M. D., Noel J. Belonguel, Jarungchai Anton S. Vatanagul

Abstract:

Patients with malignant middle cerebral infarction (MCA) (with massive brain swelling and herniation) were reported to have a mortality rate of 80% even with the appropriate conservative medical therapy. European Trials (DECIMAL, DESTINY I, and II, HAMLET) showed significant improvement in mortality and functional outcome with hemicraniectomy. No known published local studies in the region, thus a local study is vital. This is a single center, retrospective, descriptive, cross-sectional, chart review study which includes ≥18 year-old patients with malignant MCA infarction, who underwent hemicraniectomy, and those who were given conservative medical therapy alone, from January 2008 to December 2012 at Perpetual Succour Hospital. Excluded were patients whose charts are with insufficient data, prior MCA stroke, with concomitant intracerebral hemorrhage and with other serious medical conditions or terminal illnesses. Minimum of 32 populations were needed. Data were presented in mean, standard deviation, frequency and percentage distribution. Man n Whitney U test and Chi Square test were used. P-values lesser than 0.05 alpha were considered statistically significant. A total of 672 stroke patients were admitted. 34 patients pass the inclusion criteria. 9 underwent hemicraniectomy and 25 were treated by conservative medical therapy alone. Although not statistically significant (64% vs 33%, p=0.112) there were more patients noted improved in the conservative treatment group. Meanwhile, the Hemicraniectomy group have increased percentage of mortality (67%) (p=0.112). There was a decreasing trend in the average NIHSS score in both groups from admission to post-op 7 days (p=0.198, p=0.78). A bigger multicenter prospective study is recommended to control inherent biases and limitations of a retrospective and smaller study.

Keywords: cerebral infarct, hemicraniectomy, ischemic stroke, malignant middle cerebral artery (MCA) infarct

Procedia PDF Downloads 317
8595 Generation Z: Insights into Travel Behavior

Authors: Joao Ferreira Do Rosario, Nuno Gustavo, Ana Machado, Lurdes Calisto, Luisa Carvalho, Georgette Andraz

Abstract:

Currently, tourism small and medium enterprises (TSMEs) face serious economic and financial problems, making recovery efforts difficult. How the pandemic will affect tourists' behavior is still to be known. Will tourists be even more cautious regarding their choices or, on the contrary, will they be more adventurers with an enormous desire to travel in search of the lost freedom? Tourists may become even more demanding when traveling, more austere, or less concerned and eager to socialize. Adjusting to this "new tourist" is an added challenge for tourism service providers. Generation Z made up of individuals born in 1995 and following years, currently tends to assume a particular role and meaning in the present and future economic and social context, considering that we are facing the youngest workforce as well as tomorrow's consumers. This generation is distinguished from others as it is the first generation to combine a high level of education and technological knowledge and to fully experience the digital world. These young people are framed by a new value system that can explain new behaviours and consumption, namely, in the context of tourism. All these considerations point to the importance of investigating this target group as it is essential to understand how these individuals perceive, understand, act, and can be involved in a new environment built around a society regulated by new priorities and challenges of a sustainable nature. This leads not only to a focus on short-term market choices but mainly to predict future choices from a longer-term perspective. Together with the social background of a person, values are considered a stable antecedent of behavior and might therefore predict not just immediate, but also future choices. Furthermore, the meaning attributed to travel has a general connotation and goes beyond a specific travel choice or experience. In other words, values and travel's meaning form a chain of influences on the present and future travel behavior. This study explores the social background and values of Generation Z travelers vs the meaning these tourists give to travel. The aim is to discover in their present behavior cues to predict travel choices so that the future of tourism can be secured. This study also provides data for predicting the tourism choices of youngsters in the more immediate future. Methodologically, a quantitative approach was adopted based on the collection of data through a survey. Since academic research on Generation Z of tourists is still scarce, it is expected to contribute to deepening scientific knowledge in this area. Furthermore, it is expected that this research will support tourism professionals in defining differentiated marketing strategies and adapted to the requirements of this target, in a new time.

Keywords: Generation Z, travel behavior, travel meaning, Generation Z Values

Procedia PDF Downloads 224
8594 Geotechnical Engineering Solutions for Adaptation

Authors: Johnstone Walubengo Wangusi

Abstract:

Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice.

Keywords: sustainable geotechnical engineering solutions, education and training for future generations geotechnical engineers, integration of geotechnical engineering and structural engineering, use of AI in geotechnical engineering modelling

Procedia PDF Downloads 59
8593 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
8592 Formulation and Evaluation of Ethosomes of Plumeria indica Linn. Flowers

Authors: Sumeet Dwivedi, Shweta Shriwas, Raghvendra Dubey

Abstract:

The number of products based on new drug delivery systems has significantly increased in the past few years, and this growth is expected to continue in the near future. These biopharmaceuticals present challenges to drug delivery scientists because of their unique nature and difficulty in delivery through conventional routes. Therefore, future research will focus on the delivery of these complex molecules through different routes, including oral, nasal, pulmonary, vaginal, rectal, etc. The aim of present study was to formulate and evaluate ethosomes of Plumeria indica flowers which may deliver the drug to targeted site more efficiently than marketed preparation and also overcome the problems related with oral administration of drug. The formulations were prepared with ethanol, lecithin, propylene glycol and were evaluated.

Keywords: ethosomes, herbal extract, plumeria alba, lecithin

Procedia PDF Downloads 263
8591 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality

Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy

Abstract:

Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.

Keywords: wilms’ tumour, nephroblastoma, urology, survival

Procedia PDF Downloads 67
8590 Routing in IP/LEO Satellite Communication Systems: Past, Present and Future

Authors: Mohammed Hussein, Abualseoud Hanani

Abstract:

In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular.

Keywords: LEO satellite constellations, dynamic topology, IP routing, inter-satellite-links

Procedia PDF Downloads 382
8589 The Robotic Intervention in the Tourism Experience: The Customer Journey’s Touchpoints, Context, and Qualities

Authors: Aikaterini Manthiou, Phil Klaus, Kafia Ayadi

Abstract:

Tourism research has shown a growing need to comprehend the robotic tourism experience’s meaning and foundations while also offering guidance regarding future discussions and research. This paper aims to analyze the robotic tourism experience based on the basis of De Keyser et al.’s (2020) conceptualization. In order to develop three theoretical propositions, we explore the robotic tourism experience by means of the three building blocks: touchpoints, context, and qualities. The three building blocks should not be examined in isolation but as a system of interplaying factors impacting the customer journey and customer experience. The study discusses the theoretical and practical implications of these impacts, as well as providing future research directions.

Keywords: robotic tourism experience, robot, touchpoints, context, qualities

Procedia PDF Downloads 217
8588 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
8587 State of the Art and Future Perspectives of Virtual Reality, Augmented Reality, and Mixed Reality in Cardiovascular Care

Authors: Adisu Mengesha Assefa

Abstract:

The field of cardiovascular care is being transformed by the incorporation of Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), collectively known as Extended Reality (XR), into medical education, procedural planning, and patient care. This review examines the state-of-the-art applications of XR in cardiology, emphasizing its role in enhancing the precision of interventional procedures and understanding complex anatomical structures. XR technologies complement conventional imaging methods by enabling immersive three-dimensional interaction that facilitates both preoperative planning and intraoperative guidance. Despite these promising developments, challenges such as harmonizing data, integrating various imaging systems, and addressing the prevalence of cybersickness remain. Ethical considerations, including maintaining physician focus and ensuring patient safety, are crucial when implementing XR in clinical settings. This review summarizes the existing literature and highlights the need for more rigorous future studies to validate therapeutic benefits and ensure safe application. By examining both the potential and the challenges, this paper aims to delineate the current and future roles of XR in cardiovascular care, emphasizing the necessity for continued innovation and ethical oversight to improve patient outcomes.

Keywords: virtual reality, augmented reality, mixed reality, cardiovascular care, education, preprocedural planning, intraoperative guidance, postoperative patient rehabilitation

Procedia PDF Downloads 37
8586 Building Children's Capacity towards Sustainable Future: Making a Case for a Socio-Cultural Approach to Understanding Sustainability

Authors: Taiwo Frances Gbadegesin

Abstract:

Children’s capacity to contribute to social and economic status of a nation has been given more recognition than ever. Global policy priority aimed at ensuring sustainable development has been extended to the developing nations of the world. However, many developing countries have continued to puzzle out the extent and possibilities of exploring sustainability within their socio-economic environment. This paper considers ways in which the theoretical framework of Dahlberg, Moss and Pence (1999; 2007) and Moss (2007; 2012) that embraces meaning-making, social construction of childhood experiences and democratic perspectives can be used to understand children’s capacity for building a sustainable future. This paper presents data collected through interviews and observations from ECCE teachers and children in Lagos, Nigeria. A distinct finding is that children’s participation in building sustainable future is a consequence of the knowledge of the workings of their social, economic and cultural nuances and not a matter of economic wealth per se. It further argues that sustainability is situated within a complex network of local and global contexts. It thus challenges the present neo-liberal approach and advocates a democratic approach to preparing children for a sustainable society. It concludes that sustainability cannot be built on what may be seen as decontextualized responses by relevant stakeholders to the needs and experiences of the “whole child”.

Keywords: children, ECCE, sustainable development, Nigeria

Procedia PDF Downloads 360
8585 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 202