Search results for: navigation electronic map
1545 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials
Authors: Christian C. Vaso, Rinlee Butch M. Cervera
Abstract:
One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy
Procedia PDF Downloads 2501544 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications
Authors: Harmel Meriem
Abstract:
The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study
Procedia PDF Downloads 1281543 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing
Authors: Mariam Badmus, Bothina Manasreh
Abstract:
Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.Keywords: concentration, doping, magnetization, monolayer
Procedia PDF Downloads 151542 Effective Use of Educational Technology for Teaching in Nigerian Colleges of Education
Authors: Edo O. Ekanem, Eme S. Ndeh, Ubong M. Nkok
Abstract:
The role of educational technology in teaching is of great importance because of its systematic way of conceptualizing the execution and evaluation of Educational process. This study therefore examines the use of Educational Technology for teaching in Colleges of Education in south south geo-political zone of Nigeria. Four specific purposes, four research questions and four null hypotheses guided the study. The study adopted descriptive research design of the survey type. A sample of 295 lecturers from six colleges of education was selected using stratified and simple random sampling techniques. The data for this study were collected through a self-designed questionnaire and was analyzed using frequency counts, percentage scores and t-test statistics. The hypotheses for the study were tested at 0.05 significance. Findings from the study reveal that Educational Technology facilities such as Internet, electronic notice boards and projectors were not adequately used for teaching in the Colleges. It was also found that most lecturers use more of visual media than electronic/digital media in the classrooms. Moreover, the study shows that lecturers’ use of educational technology is influenced by their highest academic qualification while their level of awareness about the value of technology in education is not gender based. Lecturers’ lack of competence, inadequate Educational Technology facilities and Power are among the factors that inhibit the adequate use of the facilities. Based on the findings, recommendations were made on how to ensure effective use of Educational Technology for teaching in the Colleges in Nigeria.Keywords: colleges of education, educational technology, teaching, Nigeria
Procedia PDF Downloads 4291541 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle
Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha
Abstract:
An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe
Procedia PDF Downloads 2421540 Banking and Accounting Analysis Researches Effect on Environment and Income
Authors: Gerges Samaan Henin Abdalla
Abstract:
Ultra-secured methods of banking services have been introduced to the customer, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. Consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development
Procedia PDF Downloads 481539 Hydrology and Hydraulics Analysis of Beko Abo Dam and Appurtenant Structre Design, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to evaluate the maximum design flood for appurtenance structure design using the given climatological and hydrological data analysis on the referenced study area. The maximum design flood is determined by using flood frequency analysis. Using this method, the peak discharge is 32,583.67 m3/s, but the data is transferred because the dam site is not on the gauged station. Then the peak discharge becomes 38,115 m3/s. The study was conducted in June 2023. This dam is built across a river to create a reservoir on its upstream side for impounding water. The water stored in the reservoir is used for various purposes, such as irrigation, hydropower, navigation, fishing, etc. The total average volume of annual runoff is estimated to be 115.1 billion m3. The total potential of the land for irrigation development can go beyond 3 million ha.Keywords: dam design, flow duration curve, peak flood, rainfall, reservoir capacity, risk and reliability
Procedia PDF Downloads 291538 From Paper to the Ether: The Innovative and Historical Development of Distance Education from Correspondence to On-Line Learning and Teaching in Queensland Universities over the past Century
Authors: B. Adcock, H. van Rensburg
Abstract:
Education is ever-changing to keep up with innovative technological development and the rapid acceleration of globalisation. This chapter introduces the historical development and transformation of teaching in distance education from correspondence to on-line learning in Queensland universities. It furthermore investigates changes to the delivery models of distance education that have impacted on teaching at tertiary level in Queensland, and reflects on the social changes that have taken place during the past 100 years. This includes an analysis of the following five different periods in time: Foundation period (1911-1919) including World War I; 1920-1939 including the Great Depression; 1940-1970s, including World War II and the post war reconstruction; and the current technological era (1980s to present). In Queensland, the concept of distance education was begun by the University of Queensland (UQ) in 1911, when it began offering extension courses. The introduction of modern technology, in the form of electronic delivery, dramatically changed tertiary distance education due to political initiatives. The inclusion of electronic delivery in education signifies change at many levels, including policy, pedagogy, curriculum and governance. Changes in delivery not only affect the way study materials are delivered, but also the way courses are be taught and adjustments made by academics to their teaching methods.Keywords: distance education, innovative technological development, on line education, tertiary education
Procedia PDF Downloads 5051537 Harmonic Analysis to Improve Power Quality
Authors: Rumana Ali
Abstract:
The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.Keywords: harmonic analysis, energy bill, power quality, electronic switching devices
Procedia PDF Downloads 3101536 Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)
Authors: Włodzimierz Lewandowski, Renata Świsłocka, Aleksandra Golonko, Grzegorz Świderski, Monika Kalinowska
Abstract:
Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352.Keywords: antioxidant properties, caffeic acid, metal complexes, spectroscopic methods
Procedia PDF Downloads 2181535 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells
Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld
Abstract:
This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups
Procedia PDF Downloads 791534 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 1081533 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study
Authors: Dinesh Kumar Maurya, Sapan Mohan Saini
Abstract:
A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound
Procedia PDF Downloads 3501532 Monitoring and Evaluation of Web-Services Quality and Medium-Term Impact on E-Government Agencies' Efficiency
Authors: A. F. Huseynov, N. T. Mardanov, J. Y. Nakhchivanski
Abstract:
This practical research is aimed to improve the management quality and efficiency of public administration agencies providing e-services. The monitoring system developed will provide continuous review of the websites compliance with the selected indicators, their evaluation based on the selected indicators and ranking of services according to the quality criteria. The responsible departments in the government agencies were surveyed; the questionnaire includes issues of management and feedback, e-services provided, and the application of information systems. By analyzing the main affecting factors and barriers, the recommendations will be given that lead to the relevant decisions to strengthen the state agencies competencies for the management and the provision of their services. Component 1. E-services monitoring system. Three separate monitoring activities are proposed to be executed in parallel: Continuous tracing of e-government sites using built-in web-monitoring program; this program generates several quantitative values which are basically related to the technical characteristics and the performance of websites. The expert assessment of e-government sites in accordance with the two general criteria. Criterion 1. Technical quality of the site. Criterion 2. Usability/accessibility (load, see, use). Each high-level criterion is in turn subdivided into several sub-criteria, such as: the fonts and the color of the background (Is it readable?), W3C coding standards, availability of the Robots.txt and the site map, the search engine, the feedback/contact and the security mechanisms. The on-line survey of the users/citizens – a small group of questions embedded in the e-service websites. The questionnaires comprise of the information concerning navigation, users’ experience with the website (whether it was positive or negative), etc. Automated monitoring of web-sites by its own could not capture the whole evaluation process, and should therefore be seen as a complement to expert’s manual web evaluations. All of the separate results were integrated to provide the complete evaluation picture. Component 2. Assessment of the agencies/departments efficiency in providing e-government services. - the relevant indicators to evaluate the efficiency and the effectiveness of e-services were identified; - the survey was conducted in all the governmental organizations (ministries, committees and agencies) that provide electronic services for the citizens or the businesses; - the quantitative and qualitative measures are covering the following sections of activities: e-governance, e-services, the feedback from the users, the information systems at the agencies’ disposal. Main results: 1. The software program and the set of indicators for internet sites evaluation has been developed and the results of pilot monitoring have been presented. 2. The evaluation of the (internal) efficiency of the e-government agencies based on the survey results with the practical recommendations related to the human potential, the information systems used and e-services provided.Keywords: e-government, web-sites monitoring, survey, internal efficiency
Procedia PDF Downloads 3051531 An Investigation of the Barriers to E-Business Implementation in Small and Medium-Sized Enterprises
Authors: Jeffrey Chang, Barun Dasgupta
Abstract:
E-business technologies, whereby business transactions are conducted remotely using the Internet, present unique opportunities and challenges for business. E-business technologies are applicable to a wide range of organizations and small and medium-sized enterprises (SMEs) are no exception. There is an established body of literature about e-business, looking at definitions, concepts, benefits and challenges. In general, however, the research focus has been on larger organizations, not SMEs. In an attempt to redress the balance of research, this paper looks at e-business technologies specifically from a small business perspective. It seeks to identify the possible barriers that SMEs might face when considering adoption of the e-business concept and practice as part of their business process change initiatives and implementation. To facilitate analysis of these barriers a conceptual framework has been developed which outlines the key conceptual and practical challenges of e-business implementation in SMEs. This is developed following a literature survey comprised of three categories: characteristics of SMEs, issues of IS/IT use in SMEs and general e-business adoption and implementation issues. The framework is then empirically assessed against 7 SMEs who have yet to implement e-business or whose e-business efforts have been unsatisfactory. Conclusions from the case studies can be used to verify the framework, and set parameters for further larger scale empirical investigation.Keywords: business process change, disruptive technologies, electronic business (e-Business), electronic commerce (e-Commerce), ICT adoption, small and medium sized enterprises (SMEs)
Procedia PDF Downloads 5391530 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application
Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching
Procedia PDF Downloads 1621529 Surveying Adolescent Males in India Regarding Mobile Phone Use and Sexual and Reproductive Health Education
Authors: Rohan M. Dalal, Elena Pirondini, Shanu Somvanshi
Abstract:
Introduction: The current state of reproductive health outcomes in lower-income countries is poor, with inadequate knowledge and culture among adolescent boys. Moreover, boys have traditionally not been a priority target. To explore the opportunity to educate adolescent boys in the developing world regarding accurate reproductive health information, the purpose of this study is to investigate how adolescent boys in the developing world engage and use technology, utilizing cell phones. This electronic survey and video interview study were conducted to determine the feasibility of a mobile phone platform for an educational video game specifically designed for boys that will improve health knowledge, influence behavior, and change health outcomes, namely teen pregnancies. Methods: With the assistance of Plan India, a subsidiary of Plan International, informed consent was obtained from parents of adolescent males who participated in an electronic survey and video interviews via Microsoft Teams. An electronic survey was created with 27 questions, including topics of mobile phone usage, gaming preferences, and sexual and reproductive health, with a sample size of 181 adolescents, ages 11-25, near New Delhi, India. The interview questions were written to explore more in-depth topics after the completion of the electronic survey. Eight boys, aged 15, were interviewed for 40 minutes about gaming and usage of mobile phones as well as sexual and reproductive health. Data/Results. 154 boys and 27 girls completed the survey. They rated their English fluency as relatively high. 97% of boys (149/154) had access to mobile phones. The majority of phones were smartphones (97%, 143/148). 48% (71/149) of boys borrowed cell phones. The most popular phone platform was Samsung (22%, 33/148). 36% (54/148) of adolescent males looked at their phones 1-10 times per day for 1-2 hours. 55% (81/149) of the boys had parental restrictions. 51% (76/148) had 32 GB of storage on their phone. 78% (117/150) of the boys had wifi access. 80% (120/150) of respondents reported ease in downloading apps. 97% (145/150) of male adolescents had social media, including WhatsApp, Facebook, and YouTube. 58% (87/150) played video games. Favorite video games included Free Fire, PubG, and other shooting games. In the video interviews, the boys revealed what made games fun and engaging, including customized avatars, progression to higher levels, realistic interactive platforms, shooting/guns, the ability to perform multiple actions, and a variety of worlds/settings/adventures. Ideas to improve engagement in sexual and reproductive health classes included open discussions in the community, enhanced access to information, and posting on social media. Conclusion: This study involving an electronic survey and video interviews provides an initial foray into understanding mobile phone usage among adolescent males and understanding sexual and reproductive health education in New Delhi, India. The data gathered from this study support using mobile phone platforms, and this will be used to create a serious video game to educate adolescent males about sexual and reproductive health in an attempt to lower the rate of unwanted pregnancies in the world.Keywords: adolescent males, India, mobile phone, sexual and reproductive health
Procedia PDF Downloads 1311528 The Impact of Motivation, Trust, and National Cultural Differences on Knowledge Sharing within the Context of Electronic Mail
Authors: Said Abdullah Al Saifi
Abstract:
The goal of this research is to examine the impact of trust, motivation, and national culture on knowledge sharing within the context of electronic mail. This study is quantitative and survey based. In order to conduct the research, 200 students from a leading university in New Zealand were chosen randomly to participate in a questionnaire survey. Motivation and trust were found to be significantly and positively related to knowledge sharing. The research findings illustrated that face saving, face gaining, and individualism positively moderates the relationship between motivation and knowledge sharing. In addition, collectivism culture negatively moderates the relationship between motivation and knowledge sharing. Moreover, the research findings reveal that face saving, individualism, and collectivism culture positively moderate the relationship between trust and knowledge sharing. In addition, face gaining culture negatively moderates the relationship between trust and knowledge sharing. This study sets out several implications for researchers and practitioners. The study produces an integrative model that shows how attributes of national culture impact knowledge sharing through the use of emails. A better understanding of the relationship between knowledge sharing and trust, motivation, and national culture differences will increase individuals’ ability to make wise choices when sharing knowledge with those from different cultures.Keywords: knowledge sharing, motivation, national culture, trust
Procedia PDF Downloads 3481527 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4231526 Maxillofacial Trauma: A Case of Diacapitular Condylar Fracture
Authors: Krishna Prasad Regmi, Jun-Bo Tu, Cheng-Qun Hou, Li-Feng Li
Abstract:
Maxillofacial trauma in a pediatric group of patients is particularly challenging, as these patients have significant differences from adults as far as the facial skeleton is concerned. Mandibular condylar fractures are common presentations to hospitals across the globe and remain the most important cause of temporomandibular joint (TMJ) ankylosis. The etiology and epidemiology of pediatric trauma involving the diacapitular condylar fractures (DFs) have been reported in a large series of patients. Nevertheless, little is known about treatment protocols for DFs in children. Accordingly, the treatment modalities for the management of pediatric fractures also differ. We suggest following the PDA and intracapsular ABC classification of condylar fracture to increase the overall postoperative satisfaction level that bypasses the change of subjective feelings of patients’ from preoperative to the postoperative condition. At the same time, use of 3-D technology and surgical navigation may also increase treatment accuracy.Keywords: maxillofacial trauma, diacapitular fracture, condylar fracture, PDA classification
Procedia PDF Downloads 2711525 A Study of the Assistant Application for Tourists Taking Metros
Authors: Anqi Wang, Linye Zhang
Abstract:
With the proliferation and development of mobile devices, various mobile apps have appeared to satisfy people’s needs. Metro, with the feature of convenient, punctuality and economic, is one of the most popular modes of transportation in cities. Yet, there are still some inconveniences brought by various factors, impacting tourists’ riding experience. The aim of this study is to help tourists to shorten the time of purchasing tickets, to provide them clear metro information and direct navigation, detailed schedule as well as a way to collect metro cards as souvenir. The study collects data through three phases, including observation, survey and test. Data collected from 106 tourists totally in Wuhan metro stations are discussed in the study. The result reflects tourists’ demand when they take the metro. It also indicates the feasibility of using mobile technology to improve passenger’s experience.Keywords: mobile app, metro, public transportation, ticket, mobile payment, indoors positioning, tourists
Procedia PDF Downloads 1411524 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices
Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly
Abstract:
Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.
Procedia PDF Downloads 2341523 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.Keywords: FP-LAPW, DFT, CeO₂, properties
Procedia PDF Downloads 2171522 Implications of Circular Economy on Users Data Privacy: A Case Study on Android Smartphones Second-Hand Market
Authors: Mariia Khramova, Sergio Martinez, Duc Nguyen
Abstract:
Modern electronic devices, particularly smartphones, are characterised by extremely high environmental footprint and short product lifecycle. Every year manufacturers release new models with even more superior performance, which pushes the customers towards new purchases. As a result, millions of devices are being accumulated in the urban mine. To tackle these challenges the concept of circular economy has been introduced to promote repair, reuse and recycle of electronics. In this case, electronic devices, that previously ended up in landfills or households, are getting the second life, therefore, reducing the demand for new raw materials. Smartphone reuse is gradually gaining wider adoption partly due to the price increase of flagship models, consequently, boosting circular economy implementation. However, along with reuse of communication device, circular economy approach needs to ensure the data of the previous user have not been 'reused' together with a device. This is especially important since modern smartphones are comparable with computers in terms of performance and amount of data stored. These data vary from pictures, videos, call logs to social security numbers, passport and credit card details, from personal information to corporate confidential data. To assess how well the data privacy requirements are followed on smartphones second-hand market, a sample of 100 Android smartphones has been purchased from IT Asset Disposition (ITAD) facilities responsible for data erasure and resell. Although devices should not have stored any user data by the time they leave ITAD, it has been possible to retrieve the data from 19% of the sample. Applied techniques varied from manual device inspection to sophisticated equipment and tools. These findings indicate significant barrier in implementation of circular economy and a limitation of smartphone reuse. Therefore, in order to motivate the users to donate or sell their old devices and make electronic use more sustainable, data privacy on second-hand smartphone market should be significantly improved. Presented research has been carried out in the framework of sustainablySMART project, which is part of Horizon 2020 EU Framework Programme for Research and Innovation.Keywords: android, circular economy, data privacy, second-hand phones
Procedia PDF Downloads 1291521 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS
Procedia PDF Downloads 5471520 Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle
Authors: Koichi Yonemoto, Hiroshi Yamasaki, Masatomo Ichige, Yusuke Ura, Guna S. Gossamsetti, Takumi Ohki, Kento Shirakata, Ahsan R. Choudhuri, Shinji Ishimoto, Takashi Mugitani, Hiroya Asakawa, Hideaki Nanri
Abstract:
This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results.Keywords: autonomous guidance and control, reusable rocket, space transportation system, suborbital vehicle, winged rocket
Procedia PDF Downloads 3681519 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1371518 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System
Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision, free trajectories
Procedia PDF Downloads 3751517 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course
Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo
Abstract:
This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance
Procedia PDF Downloads 1741516 Low Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors
Procedia PDF Downloads 442