Search results for: fuzzy logistic regression
3543 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 3823542 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 1303541 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 553540 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria
Procedia PDF Downloads 2643539 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 1883538 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation
Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.Keywords: collision risk, pose, shape, fuzzy logic
Procedia PDF Downloads 5293537 Application and Verification of Regression Model to Landslide Susceptibility Mapping
Authors: Masood Beheshtirad
Abstract:
Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.Keywords: landslide, mapping, multiple model, regression
Procedia PDF Downloads 3243536 Determining Variables in Mathematics Performance According to Gender in Mexican Elementary School
Authors: Nora Gavira Duron, Cinthya Moreda Gonzalez-Ortega, Reyna Susana Garcia Ruiz
Abstract:
This paper objective is to analyze the mathematics performance in the Learning Evaluation National Plan (PLANEA for its Spanish initials: Plan Nacional para la Evaluación de los Aprendizajes), applied to Mexican students who are enrolled in the last elementary-school year over the 2017-2018 academic year. Such test was conducted nationwide in 3,573 schools, using a sample of 108,083 students, whose average in mathematics, on a scale of 0 to 100, was 45.6 points. 75% of the sample analyzed did not reach the sufficiency level (60 points). It should be noted that only 2% got a 90 or higher score result. The performance is analyzed while considering whether there are differences in gender, marginalization level, public or private school enrollment, parents’ academic background, and living-with-parents situation. Likewise, this variable impact (among other variables) on school performance by gender is evaluated, considering multivariate logistic (Logit) regression analysis. The results show there are no significant differences in mathematics performance regarding gender in elementary school; nevertheless, the impact exerted by mothers who studied at least high school is of great relevance for students, particularly for girls. Other determining variables are students’ resilience, their parents’ economic status, and the fact they attend private schools, strengthened by the mother's education.Keywords: multivariate regression analysis, academic performance, learning evaluation, mathematics result per gender
Procedia PDF Downloads 1463535 A Multilevel Analysis of Predictors of Early Antenatal Care Visits among Women of Reproductive Age in Benin: 2017/2018 Benin Demographic and Health Survey
Authors: Ebenezer Kwesi Armah-Ansah, Kenneth Fosu Oteng, Esther Selasi Avinu, Eugene Budu, Edward Kwabena Ameyaw
Abstract:
Background: Maternal mortality, particularly in Benin, is a major public health concern in Sub-Saharan Africa. To provide a positive pregnancy experience and reduce maternal morbidities, all pregnant women must get appropriate and timely prenatal support. However, many pregnant women in developing countries, including Benin, begin antenatal care late. There is a paucity of empirical literature on the prevalence and predictors of early antenatal care visits in Benin. As a result, the purpose of this study is to investigate the prevalence and predictors of early antenatal care visits among women of productive age in Benin. Methods: This is a secondary analysis of the 2017/2018 Benin Demographic and Health Survey (BDHS) data. The study involved 6,919 eligible women. Data analysis was conducted using Stata version 14.2 for Mac OS. We adopted a multilevel logistic regression to examine the predictors of early ANC visits in Benin. The results were presented as odds ratios (ORs) associated with 95% confidence intervals (CIs) and p-value <0.05 to determine the significant associations. Results: The prevalence of early ANC visits among pregnant women in Benin was 57.03% [95% CI: 55.41-58.64]. In the final multilevel logistic regression, early ANC visit was higher among women aged 30-34 [aOR=1.60, 95% CI=1.17-2.18] compared to those aged 15-19, women with primary education [aOR=1.22, 95% CI=1.06-142] compared to the non-educated women, women who were covered by health insurance [aOR=3.03, 95% CI=1.35-6.76], women without a big problem in getting the money needed for treatment [aOR=1.31, 95% CI=1.16-1.49], distance to the health facility, not a big problem [aOR=1.23, 95% CI=1.08-1.41], and women whose partners had secondary/higher education [aOR=1.35, 95% CI=1.15-1.57] compared with those who were not covered by health insurance, had big problem in getting money needed for treatment, distance to health facility is a big problem and whose partners had no education respectively. However, women who had four or more births [aOR=0.60, 95% CI=0.48-0.74] and those in Atacora Region [aOR=0.50, 95% CI=0.37-0.68] had lower odds of early ANC visit. Conclusion: This study revealed a relatively high prevalence of early ANC visits among women of reproductive age in Benin. Women's age, educational status of women and their partners, parity, health insurance coverage, distance to health facilities, and region were all associated with early ANC visits among women of reproductive in Benin. These factors ought to be taken into account when developing ANC policies and strategies in order to boost early ANC visits among women in Benin. This will significantly reduce maternal and newborn mortality and help achieve the World Health Organization’s recommendation that all pregnant women should initiate early ANC visits within the first three months of pregnancy.Keywords: antenatal care, Benin, maternal health, pregnancy, DHS, public health
Procedia PDF Downloads 663534 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 4303533 Evidence Based Approach on Beliefs and Perceptions on Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
The US has developed numerous programs over the past 50 years to enhance the lives of those who suffer from mental health illnesses and substance abuse, as well as the effectiveness of their treatments. Despite these advances over the past 50 years, there hasn't been a corresponding improvement in American public attitudes and beliefs about mental health disorders and substance abuse. Highly publicized acts of violence frequently elicit comments that blame the perpetrator's perceived mental health disorder since such people are thought to be substance abusers. Despite these strong public beliefs and perception about mental disorder and substance abuse, concreate empirical evidence that entail this perception is lacking, and evidence of their effectiveness has not been integrated. A rich data was collected from Substance Abuse and Mental Health Services Administration (SAMHSA) with a hypothesis that people who are diagnosed with a mental health disorder are likely to be diagnosed with substance abuse using logit regression analysis and Instrumental Variable. It was found that depressive, anxiety, and trauma/stressor mental disorders constitute the most common mental disorder in the United States, and the study could not find statistically significant evidence that being diagnosed with these leading mental health disorders in the United States does necessarily imply that such a patient is diagnosed with substances abuse. Thus, the public has a misconception of mental health and substance abuse issues, and social workers' responsibilities are outlined in order to assist ameliorate this attitude and perception.Keywords: mental health disorder, substance use, empirical evidence, logistic regression
Procedia PDF Downloads 783532 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means
Procedia PDF Downloads 2103531 The Impact of International Financial Reporting Standards (IFRS) Adoption on Performance’s Measure: A Study of UK Companies
Authors: Javad Izadi, Sahar Majioud
Abstract:
This study presents an approach of assessing the choice of performance measures of companies in the United Kingdom after the application of IFRS in 2005. The aim of this study is to investigate the effects of IFRS on the choice of performance evaluation methods for UK companies. We analyse through an econometric model the relationship of the dependent variable, the firm’s performance, which is a nominal variable with the independent ones. Independent variables are split into two main groups: the first one is the group of accounting-based measures: Earning per share, return on assets and return on equities. The second one is the group of market-based measures: market value of property plant and equipment, research and development, sales growth, market to book value, leverage, segment and size of companies. Concerning the regression used, it is a multinomial logistic regression performed on a sample of 130 UK listed companies. Our finding shows after IFRS adoption, and companies give more importance to some variables such as return on equities and sales growth to assess their performance, whereas the return on assets and market to book value ratio does not have as much importance as before IFRS in evaluating the performance of companies. Also, there are some variables that have no impact on the performance measures anymore, such as earning per share. This article finding is empirically important for business in subjects related to IFRS and companies’ performance measurement.Keywords: performance’s Measure, nominal variable, econometric model, evaluation methods
Procedia PDF Downloads 1383530 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 4193529 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 1773528 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 2413527 A Fuzzy Logic Based Health Assesment Platform
Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana
Abstract:
Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.Keywords: healthcare, fuzzy logic, MEWS, RFID
Procedia PDF Downloads 3483526 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)
Procedia PDF Downloads 4513525 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions
Authors: Abderrahim Siam, Ramdane Maamri, Zaidi Sahnoun
Abstract:
The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines. The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques, and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.Keywords: adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets
Procedia PDF Downloads 4873524 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design
Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley
Abstract:
This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach
Procedia PDF Downloads 6553523 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2093522 Maximum Power Point Tracking Using Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique
Authors: Mohamed A. Moustafa Hassan, Omnia S .S. Hussian, Hany M. Elsaved
Abstract:
This paper introduces the application of Fuzzy Logic Controller (FLC) to extract the Maximum Power Point Tracking (MPPT) from the PV panel. In addition, the proportional integral (PI) controller is used to be the strategy for battery charge control according to acceptable performance criteria. The parameters of the PI controller have been tuned via Modified Adaptive Accelerated Coefficient Particle Swarm Optimization (MAACPSO) technique. The simulation results, using MATLAB/Simulink tools, show that the FLC technique has advantages for use in the MPPT problem, as it provides a fast response under changes in environmental conditions such as radiation and temperature. In addition, the use of PI controller based on MAACPSO results in a good performance in terms of controlling battery charging with constant voltage and current to execute rapid charging.Keywords: battery charging, fuzzy logic control, maximum power point tracking, PV system, PI controller, evolutionary technique
Procedia PDF Downloads 1663521 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1453520 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 1433519 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 2003518 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 4413517 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.Keywords: adaptive complex systems, X-Events, risk management, antifragility, banking antifragility index, triangular fuzzy number
Procedia PDF Downloads 1833516 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2923515 Analysis of the Savings Behaviour of Rice Farmers in Tiaong, Quezon, Philippines
Authors: Angelika Kris D. Dalangin, Cesar B. Quicoy
Abstract:
Rice farming is a major source of livelihood and employment in the Philippines, but it requires a substantial amount of capital. Capital may come from income (farm, non-farm, and off-farm), savings and credit. However, rice farmers suffer from lack of capital due to high costs of inputs and low productivity. Capital insufficiency, coupled with low productivity, hindered them to meet their basic household and production needs. Hence, they resorted to borrowing money, mostly from informal lenders who charge very high interest rates. As another source of capital, savings can help rice farmers meet their basic needs for both the household and the farm. However, information is inadequate whether the farmers save or not, as well as, why they do not depend on savings to augment their lack of capital. Thus, it is worth analyzing how rice farmers saved. The study revealed, using the actual savings which is the difference between the household income and expenditure, that about three-fourths (72%) of the total number of farmers interviewed are savers. However, when they were asked whether they are savers or not, more than half of them considered themselves as non-savers. This gap shows that there are many farmers who think that they do not have savings at all; hence they continue to borrow money and do not depend on savings to augment their lack of capital. The study also identified the forms of savings, saving motives, and savings utilization among rice farmers. Results revealed that, for the past 12 months, most of the farmers saved cash at home for liquidity purposes while others deposited cash in banks and/or saved their money in the form of livestock. Among the most important reasons of farmers for saving are for daily household expenses, for building a house, for emergency purposes, for retirement, and for their next production. Furthermore, the study assessed the factors affecting the rice farmers’ savings behaviour using logistic regression. Results showed that the factors found to be significant were presence of non-farm income, per capita net farm income, and per capita household expense. The presence of non-farm income and per capita net farm income positively affects the farmers’ savings behaviour. On the other hand, per capita household expenses have negative effect. The effect, however, of per capita net farm income and household expenses is very negligible because of the very small chance that the farmer is a saver. Generally, income and expenditure were proved to be significant factors that affect the savings behaviour of the rice farmers. However, most farmers could not save regularly due to low farm income and high household and farm expenditures. Thus, it is highly recommended that government should develop programs or implement policies that will create more jobs for the farmers and their family members. In addition, programs and policies should be implemented to increase farm productivity and income.Keywords: agricultural economics, agricultural finance, binary logistic regression, logit, Philippines, Quezon, rice farmers, savings, savings behaviour
Procedia PDF Downloads 2283514 Effects of Polyvictimization in Suicidal Ideation among Children and Adolescents in Chile
Authors: Oscar E. Cariceo
Abstract:
In Chile, there is a lack of evidence about the impact of polyvictimization on the emergence of suicidal thoughts among children and young people. Thus, this study aims to explore the association between the episodes of polyvictimization suffered by Chilean children and young people and the manifestation of signs related to suicidal tendencies. To achieve this purpose, secondary data from the First Polyvictimization Survey on Children and Adolescents of 2017 were analyzed, and a binomial logistic regression model was applied to establish the probability that young people are experiencing suicidal ideation episodes. The main findings show that women between the ages of 13 and 15 years, who are in seventh grade and second in subsidized schools, are more likely to express suicidal ideas, which increases if they have suffered different types of victimization, particularly physical violence, psychological aggression, and sexual abuse.Keywords: Chile, polyvictimization, suicidal ideation, youth
Procedia PDF Downloads 178