Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: polyvictimization

3 Effects of Polyvictimization in Suicidal Ideation among Children and Adolescents in Chile

Authors: Oscar E. Cariceo

Abstract:

In Chile, there is a lack of evidence about the impact of polyvictimization on the emergence of suicidal thoughts among children and young people. Thus, this study aims to explore the association between the episodes of polyvictimization suffered by Chilean children and young people and the manifestation of signs related to suicidal tendencies. To achieve this purpose, secondary data from the First Polyvictimization Survey on Children and Adolescents of 2017 were analyzed, and a binomial logistic regression model was applied to establish the probability that young people are experiencing suicidal ideation episodes. The main findings show that women between the ages of 13 and 15 years, who are in seventh grade and second in subsidized schools, are more likely to express suicidal ideas, which increases if they have suffered different types of victimization, particularly physical violence, psychological aggression, and sexual abuse.

Keywords: Chile, polyvictimization, suicidal ideation, youth

Procedia PDF Downloads 98
2 Polyvictimization and the Risk of Harm to Self and Others among Children and Youth

Authors: Shannon L. Stewart, Ashley Toohey, Natalia Lapshina

Abstract:

There is a well-established relationship between childhood maltreatment and negative outcomes (e.g., physical and mental health problems, social skill deficits, poor quality of life). The goal of this study was to examine the relationship between polyvictimization (multiple types of trauma) and risk of harm to self and others, taking into account possible age and sex differences. A total of 8980 children and youth were recruited from over 50 mental health facilities across Ontario, Canada. Among this sample, 29% of children and youth had experienced polyvictimization. Results showed that female children and youth who had experienced trauma were at greater risk of harm to themselves, while their male counterparts were at greater risk of harming others. Further, findings from this study highlight that experiencing polyvictimization, regardless of age or sex, increased the risk of harm to self and others. These findings add to extant literature as to the cumulative relationship between polyvictimization and risk in relation to harming oneself or others. Further, results from this study have significant implications for assessment and care-planning for those children and youth presenting with a trauma background.

Keywords: children's mental health, polyvictimization, risk of harm, sex differences

Procedia PDF Downloads 50
1 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 87