Search results for: contact voltage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2988

Search results for: contact voltage

2448 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment

Authors: Fatemeh Rezaei, Babak Shokri

Abstract:

In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.

Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma

Procedia PDF Downloads 651
2447 Studying Together Affects Perceived Social Distance but Not Stereotypes: Nursing Students' Perception of Their Intergroup Relationship

Authors: Michal Alon-Tirosh, Dorit Hadar-Shoval

Abstract:

Social Psychology theories, such as the intergroup contact theory, content that bringing members of different social groups into contact is a promising approach for improving intergroup relations. The heterogeneous nature of the nursing profession generates encounters between members of different social groups .The social relations that nursing students develop with their peers during their years of study, and the meanings they ascribe to these contacts, may affect the success of their nursing careers. Jewish-Arab relations in Israel are the product of an ongoing conflict and are characterized by stereotyped negative perceptions and mutual suspicions. Nursing education is often the first situation in which Jewish and Arab nursing students have direct and long-term contact with people from the other group. These encounters present a significant challenge. The current study explores whether this contact between Jewish and Arab nursing students during their academic studies improves their perception of their intergroup relationship. The study explores the students' perceptions of the social relations between the two groups. We examine attribution of stereotypes (positive and negative) and willingness to engage in social interactions with individuals from the other group. The study hypothesis is that academic seniority (beginning students, advanced students) will be related to perceptions of the relations between the two groups, as manifested in attributions of positive and negative stereotypes and willingness to reduce the social distance between the two groups. Method: One hundred and eighty Jewish and Arab nursing students (111 Jewish and 69 Arab) completed questionnaires examining their perceptions of the social relations between the two groups. The questionnaires were administered at two different points in their studies (beginning students and those at more advanced stages Results: No differences were found between beginning students and advanced students with respect to stereotypes. However, advanced students expressed greater willingness to reduce social distance than did beginning students. Conclusions: The findings indicate that bringing members of different social groups into contact may improve some aspects of intergroup relations. The findings suggest that different aspects of perceptions of social relations are influenced by different contexts: the students' specific context (joint studies and joint work in the future) and the broader general context of relations between the groups. Accordingly, it is recommended that programs aimed at improving relations in a between social groups will focus on willingness to cooperate and reduce social distance rather than on attempts to eliminate stereotypes.

Keywords: nursing education, perceived social relations, social distance, stereotypes

Procedia PDF Downloads 83
2446 Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination

Authors: Kevin Zhao, Norman J. Horing

Abstract:

A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology.

Keywords: cell sorter, CTC cell, detection and discrimination, dielectrophoresisords, simulation

Procedia PDF Downloads 414
2445 An Exploration of the Technical and Economic Feasibility of a Stand Alone Solar PV Generated DC Distribution System over AC Distribution System for Use in the Modern as Well as Future Houses of Isolated Areas

Authors: Alpesh Desai, Indrajit Mukhopadhyay

Abstract:

Standalone Photovoltaic (PV) systems are designed and sized to supply certain AC and/or DC electrical loads. In computers, consumer electronics and many small appliances as well as LED lighting the actual power consumed is DC. The DC system, which requires only voltage control, has many advantages such as feasible connection of the distributed energy sources and reduction of the conversion losses for DC-based loads. Also by using the DC power directly the cost of the size of the Inverter and Solar panel reduced hence the overall cost of the system reduced. This paper explores the technical and economic feasibility of supplying electrical power to homes/houses using DC voltage mains within the house. Theoretical calculated results are presented to demonstrate the advantage of DC system over AC system with PV on sustainable rural/isolated development.

Keywords: distribution system, energy efficiency, off-grid, stand-alone PV system, sustainability, techno-socio-economic

Procedia PDF Downloads 248
2444 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 108
2443 Phenols and Manganese Removal from Landfill Leachate and Municipal Waste Water Using the Constructed Wetland

Authors: Amin Mojiri, Lou Ziyang

Abstract:

Constructed wetland (CW) is a reasonable method to treat waste water. Current study was carried out to co-treat landfill leachate and domestic waste water using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate to waste water mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate to waste water mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively.

Keywords: constructed wetland, Manganese, phenols, Thypha domingensis

Procedia PDF Downloads 309
2442 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 128
2441 Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation

Authors: Deepa S N, Srinivasan a D, Veeramanju K T

Abstract:

The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution.

Keywords: blended oil, dielectric breakdown, liquid insulation, power transformer

Procedia PDF Downloads 70
2440 A TiO₂-Based Memristor Reliable for Neuromorphic Computing

Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang

Abstract:

A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.

Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based

Procedia PDF Downloads 62
2439 Jitter Based Reconstruction of Transmission Line Pulse Using On-Chip Sensor

Authors: Bhuvnesh Narayanan, Bernhard Weiss, Tvrtko Mandic, Adrijan Baric

Abstract:

This paper discusses a method to reconstruct internal high-frequency signals through subsampling techniques in an IC using an on-chip sensor. Though there are existing methods to internally probe and reconstruct high frequency signals through subsampling techniques; these methods have been applicable mainly for synchronized systems. This paper demonstrates a method for making such non-intrusive on-chip reconstructions possible also in non-synchronized systems. The TLP pulse is used to demonstrate the experimental validation of the concept. The on-chip sensor measures the voltage in an internal node. The jitter in the input pulse causes a varying pulse delay with respect to the on-chip sampling command. By measuring this pulse delay and by correlating it with the measured on-chip voltage, time domain waveforms can be reconstructed, and the influence of the pulse on the internal nodes can be better understood.

Keywords: on-chip sensor, jitter, transmission line pulse, subsampling

Procedia PDF Downloads 128
2438 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 266
2437 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 287
2436 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 161
2435 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles

Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo

Abstract:

Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.

Keywords: surface texturing, surface modification, topography, ultrasonic

Procedia PDF Downloads 209
2434 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers

Authors: Marcus Klein, Martina GrießBach, Richard Kupke

Abstract:

The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.

Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology

Procedia PDF Downloads 298
2433 Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation

Authors: Tanveer Iqbal, Saima Yasin, Muhammad Zafar, Ahmad Shakeel, Fahad Nazir, Paul F. Luckham

Abstract:

The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites.

Keywords: nanoindentation, PEEK, modulus, hardness, plasticization

Procedia PDF Downloads 174
2432 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems

Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian

Abstract:

This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.

Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems

Procedia PDF Downloads 361
2431 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter

Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna

Abstract:

In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.

Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion

Procedia PDF Downloads 515
2430 Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria

Authors: Oluwatosin S. Adeoye

Abstract:

The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively.

Keywords: development, frequency, interruption, power, quality

Procedia PDF Downloads 148
2429 Studies on Optimization of Batch Biosorption of Cr (VI) and Cu (II) from Wastewater Using Bacillus subtilis

Authors: Narasimhulu Korrapati

Abstract:

The objective of this present study is to optimize the process parameters for batch biosorption of Cr(VI) and Cu(II) ions by Bacillus subtilis using Response Surface Methodology (RSM). Batch biosorption studies were conducted under optimum pH, temperature, biomass concentration and contact time for the removal of Cr(VI) and Cu(II) ions using Bacillus subtilis. From the studies it is noticed that the maximum biosorption of Cr(VI) and Cu(II) was by Bacillus subtilis at optimum conditions of contact time of 30 minutes, pH of 4.0, biomass concentration of 2.0 mg/mL, the temperature of 32°C in batch biosorption studies. Predicted percent biosorption of the selected heavy metal ions by the design expert software is in agreement with experimental results of percent biosorption. The percent biosorption of Cr(VI) and Cu(II) in batch studies is 80% and 78.4%, respectively.

Keywords: heavy metal ions, response surface methodology, biosorption, wastewater

Procedia PDF Downloads 256
2428 Simulation and Modeling of High Voltage Pulse Transformer

Authors: Zahra Emami, H. Reza Mesgarzade, A. Morad Ghorbami, S. Reza Motahari

Abstract:

This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values.

Keywords: pulse transformer, simulation, modeling, Maxwell 3D, modulator

Procedia PDF Downloads 442
2427 Numerical Study on the EHD Pump with a Recirculating Channel

Authors: Dong Sik Cho, Yong Kweon Suh

Abstract:

Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.

Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage

Procedia PDF Downloads 283
2426 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, maximum power point tracking, silver mean method

Procedia PDF Downloads 254
2425 A Proper Design of Wind Turbine Grounding Systems under Lightning

Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said

Abstract:

Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.

Keywords: WTs, Lightning Protection Systems (LPS), GPR, grounding system, mitigating techniques

Procedia PDF Downloads 358
2424 Investigating the Potential of a Blended Format for the Academic Reading Module Course Redesign

Authors: Reham Niazi, Marwa Helmy, Susanne Rizzo

Abstract:

This classroom action research is designed to explore the possibility of adding effective online content to supplement and add learning value to the current reading module. The aim of this research was two-fold, first to investigate students’ acceptance of and interactivity with online components, chosen to orient students with the content, and to pave the way for more in-class activities and skill practice. Secondly, the instructor aimed to examine students’ willingness to have the course contact hours remain the same with some online components to be done at home (flipped approach) or if students were open to turn the class into a blended format with two scenarios; either to have the current contact hours and apply the blended and in this case the face to face component will be less or keep the number of face to face classes the same and add more online structured classes as part of the course hours.

Keywords: blended learning, flipped classroom, graduate students, education

Procedia PDF Downloads 158
2423 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 278
2422 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 161
2421 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 258
2420 Spin-Dipole Excitations Produced On-Demand in the Fermi Sea

Authors: Mykhailo Moskalets, Pablo Burset, Benjamin Roussel, Christian Flindt

Abstract:

The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation.

Keywords: Andreev level, on-demand, single-electron, spin-dipole

Procedia PDF Downloads 72
2419 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 233