Search results for: consumer data right
25363 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling
Procedia PDF Downloads 43325362 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 43525361 The Role Of Data Gathering In NGOs
Authors: Hussaini Garba Mohammed
Abstract:
Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.Keywords: reliable information, data assessment, data mining, data communication
Procedia PDF Downloads 17925360 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 17125359 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 85225358 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 8325357 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future
Authors: Ludmilla Wikkeling-Scott, Amira Karim
Abstract:
Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus
Procedia PDF Downloads 15925356 Designing of Oat Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers
Authors: Gramza-Michalowska Anna, Skrety Joanna, Anna Zywica, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef
Abstract:
Background: Modern consumer highly appreciates the positive influence of consumed products on well-being and overall health. High acceptance of new food is a result of intensified research showing many proofs confirming that food offers significant prophylactic and therapeutic potential, next to its basic nutritional function. Objective: Proposition of the technology of unsweetened oat drinks enriched with plant extracts for pro-health oriented individuals. We investigated the effects of selected plant extracts addition on antioxidative capacity and consumer’s acceptance of drinks as representative of all day diet product. Methods: The analysis of the basic composition and antioxidant properties of the drinking product was conducted. Basic composition included protein, lipids and fiber content. Antioxidant capacity of drink was evaluated with use radical scavenging methods (DPPH, ABTS), ORAC value and FRAP. Proposed drink as new product was also characterized with sensory analysis, which included color, aroma, taste, consistency and overall acceptance. Results: Results showed that addition of plant extracts into a oat drink allowed to enhance its antioxidant potential and influenced significantly its sensory values. The preferred composition and properties of designed beverage permit claim that it can have a positive impact on the health of the consumers. Conclusion: Designed oat drink would be an answer for pro-healthy life style of the consumers. Results showed that product with plant extracts addition would be accepted by the consumers and because of its antioxidative potential could be an important factor in prevention of free radicals influence on human organism.Keywords: phytonutrients, pro-health, well-being, antioxidant potential, sensory value
Procedia PDF Downloads 34425355 The Relationship Between Artificial Intelligence, Data Science, and Privacy
Authors: M. Naidoo
Abstract:
Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.Keywords: artificial intelligence, data science, law, policy
Procedia PDF Downloads 10625354 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 17625353 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 9125352 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index
Authors: Kwaku Damoah
Abstract:
The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index
Procedia PDF Downloads 6325351 Assessing of Social Comfort of the Russian Population with Big Data
Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro
Abstract:
The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.Keywords: big data, Google trends, integral indicator, social comfort
Procedia PDF Downloads 20025350 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 46025349 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 50125348 Consumer Preferences when Buying Second Hand Luxury Items
Authors: K. A. Schuck, J. K. Perret, A. Mehn, K. Rommel
Abstract:
Consumers increasingly consider sustainability aspects in their consumption behavior. Although, few fashion brands are already active in the second-hand luxury market with their own online platforms. Separating between base and high-end luxury brands, two online discrete choice experiments determine the drivers behind consumers’ willingness-to-pay for platform characteristics like the type of ownership, giving brands the opportunity to elicit a financial scope they can operate within.Keywords: choice experiment, luxury, preferences, second-hand, platform, online
Procedia PDF Downloads 12725347 Consumer Utility Analysis of Halal Certification on Beef Using Discrete Choice Experiment: A Case Study in the Netherlands
Authors: Rosa Amalia Safitri, Ine van der Fels-Klerx, Henk Hogeveen
Abstract:
Halal is a dietary law observed by people following Islamic faith. It is considered as a type of credence food quality which cannot be easily assured by consumers even upon and after consumption. Therefore, Halal certification takes place as a practical tool for the consumers to make an informed choice particularly in a non-Muslim majority country, including the Netherlands. Discrete choice experiment (DCE) was employed in this study for its ability to assess the importance of attributes attached to Halal beef in the Dutch market and to investigate consumer utilities. Furthermore, willingness to pay (WTP) for the desired Halal certification was estimated. Four most relevant attributes were selected, i.e., the slaughter method, traceability information, place of purchase, and Halal certification. Price was incorporated as an attribute to allow estimation of willingness to pay for Halal certification. There were 242 Muslim respondents who regularly consumed Halal beef completed the survey, from Dutch (53%) and non-Dutch consumers living in the Netherlands (47%). The vast majority of the respondents (95%) were within the age of 18-45 years old, with the largest group being student (43%) followed by employee (30%) and housewife (12%). Majority of the respondents (76%) had disposable monthly income less than € 2,500, while the rest earned more than € 2,500. The respondents assessed themselves of having good knowledge of the studied attributes, except for traceability information with 62% of the respondents considered themselves not knowledgeable. The findings indicated that slaughter method was valued as the most important attribute, followed by Halal certificate, place of purchase, price, and traceability information. This order of importance varied across sociodemographic variables, except for the slaughter method. Both Dutch and non-Dutch subgroups valued Halal certification as the third most important attributes. However, non-Dutch respondents valued it with higher importance (0,20) than their Dutch counterparts (0,16). For non-Dutch, the price was more important than Halal certification. The ideal product preferred by the consumers indicated the product serving the highest utilities for consumers, and characterized by beef obtained without pre-slaughtering stunning, with traceability info, available at Halal store, certified by an official certifier, and sold at 2.75 € per 500 gr. In general, an official Halal certifier was mostly preferred. However, consumers were not willing to pay for premium for any type of Halal certifiers, indicated by negative WTP of -0.73 €, -0.93 €, and -1,03€ for small, official, and international certifiers, respectively. This finding indicated that consumers tend to lose their utility when confronted with price. WTP estimates differ across socio-demographic variables with male and non-Dutch respondents had the lowest WTP. The unfamiliarity to traceability information might cause respondents to perceive it as the least important attribute. In the context of Halal certified meat, adding traceability information into meat packaging can serve two functions, first consumers can justify for themselves whether the processes comply with Halal requirements, for example, the use of pre-slaughtering stunning, and secondly to assure its safety. Therefore, integrating traceability info into meat packaging can help to make informed decision for both Halal status and food safety.Keywords: consumer utilities, discrete choice experiments, Halal certification, willingness to pay
Procedia PDF Downloads 12825346 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.Keywords: big data, big data analytics, Hadoop, cloud
Procedia PDF Downloads 31025345 Perception of Value Affecting Engagement Through Online Audio Communication
Authors: Apipol Penkitti
Abstract:
The new normal or a new way of life stemmed from the COVID-19 outbreak, gave rise to a new form of social media: audio-based social platforms (ABSPs), known as Clubhouse, Twitter space, and Facebook live audio room. These platforms, on which audio-based communication is featured, became popular in a short span of time. The objective of the research study is to understand ABSPs users’ behaviors in Thailand. The study, in which functional attitude theory, uses and gratifications theory, and social influence theory are referred to, is conducted through consumer perceived utilitarian, hedonic, and social value that affect engagement. This research study is mixed method paradigm, utilizing Model of Triangulation as its framework. The data acquisition is proceeded through questionnaires from a sample of 384 male, female and LGBTQA+ individuals aged 25 - 34 who, from various occupations, have used audio-based social platform applications. This research study employs the structural equation modeling to analyze the relationships between variables, and it uses the semi - structured interviewing to comprehend the rationality of the variables in the study. The study found that hedonic value directly affects engagement.Keywords: audio based social platform, engagement, hedonic, perceived value, social, utilitarian
Procedia PDF Downloads 12625344 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 41825343 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 13425342 An Echo of Eco: Investigating the Effectiveness of Eco-Friendly Advertising Media of Fashion Brand Communication
Authors: Vaishali Joshi
Abstract:
In the past, companies and buyers operated as if there was infinite availability of natural resources for usage, which has resulted in the loss of our globe's natural ecosystem. People's consciousness of ecological concerns had increased, which showed the way for the evolution of the green revolution with the objective of discontinuing the use of products that are harmful to the ecosystem of the earth. This green revolution has made the consumers head toward those companies which are providing eco-friendly products s/service s through less eco-harmful ways. Studies show that companies started gaining a reputation in the market through their eco-friendly activities in their business. Hence companies should be alert to understand the consumer's environmentally friendly consumption behavior to survive and be in the game of the competition. Green marketing efforts guarantee beneficial exchanges without harmful consequences for current and /or upcoming generations. This hits the green policies of those companies which are claiming environmental concern. This means that these companies not only focus on the impact of their production and products on the ecosystem but also on every small activity in their value chain. One of the most ignored parts of the value chain is the medium through which the marketing of products/services is done. These companies should also take into account to what degree their selection of advertising media affects the ecosystem of the earth. In this study, a hypothetical fashion apparel brand known as "Dolphin" will be studied. In particular, the following objectives are framed: i) to study the brand attitude of the given fashion brand due to its selection of eco-friendly advertising medium ii) to study the advertisement attitude of the given fashion brand due to its selection of eco-friendly advertising medium and iii) to study the purchase intention of the given fashion brand due to its selection of eco-friendly advertising medium. An online experiment will be conducted. Respondents between the ages of 20-and 64 years will be selected randomly from the online consumer panel database. The findings of this study will have a great impact on the companies that are claiming environmental concerns by understanding how the advertising media is affecting the company’s brand image in the long run.Keywords: eco-friendly advertising media, fashion, attitude, purchase intention
Procedia PDF Downloads 9825341 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 5725340 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK
Authors: Aisha Ijaz
Abstract:
The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK
Procedia PDF Downloads 5625339 Detection of Egg Proteins in Food Matrices (2011-2021)
Authors: Daniela Manila Bianchi, Samantha Lupi, Elisa Barcucci, Sandra Fragassi, Clara Tramuta, Lucia Decastelli
Abstract:
Introduction: The undeclared allergens detection in food products plays a fundamental role in the safety of the allergic consumer. The protection of allergic consumers is guaranteed, in Europe, by Regulation (EU) No 1169/2011 of the European Parliament, which governs the consumer's right to information and identifies 14 food allergens to be mandatorily indicated on food labels: among these, an egg is included. An egg can be present as an ingredient or as contamination in raw and cooked products. The main allergen egg proteins are ovomucoid, ovalbumin, lysozyme, and ovotransferrin. This study presents the results of a survey conducted in Northern Italy aimed at detecting the presence of undeclared egg proteins in food matrices in the latest ten years (2011-2021). Method: In the period January 2011 - October 2021, a total of 1205 different types of food matrices (ready-to-eat, meats, and meat products, bakery and pastry products, baby foods, food supplements, pasta, fish and fish products, preparations for soups and broths) were delivered to Food Control Laboratory of Istituto Zooprofilattico Sperimentale of Piemonte Liguria and Valle d’Aosta to be analyzed as official samples in the frame of Regional Monitoring Plan of Food Safety or in the contest of food poisoning. The laboratory is ISO 17025 accredited, and since 2019, it has represented the National Reference Centre for the detection in foods of substances causing food allergies or intolerances (CreNaRiA). All samples were stored in the laboratory according to food business operator instructions and analyzed within the expiry date for the detection of undeclared egg proteins. Analyses were performed with RIDASCREEN®FAST Ei/Egg (R-Biopharm ® Italia srl) kit: the method was internally validated and accredited with a Limit of Detection (LOD) equal to 2 ppm (mg/Kg). It is a sandwich enzyme immunoassay for the quantitative analysis of whole egg powder in foods. Results: The results obtained through this study showed that egg proteins were found in 2% (n. 28) of food matrices, including meats and meat products (n. 16), fish and fish products (n. 4), bakery and pastry products (n. 4), pasta (n. 2), preparations for soups and broths (n.1) and ready-to-eat (n. 1). In particular, in 2011 egg proteins were detected in 5% of samples, in 2012 in 4%, in 2013, 2016 and 2018 in 2%, in 2014, 2015 and 2019 in 3%. No egg protein traces were detected in 2017, 2020, and 2021. Discussion: Food allergies occur in the Western World in 2% of adults and up to 8% of children. Allergy to eggs is one of the most common food allergies in the pediatrics context. The percentage of positivity obtained from this study is, however, low. The trend over the ten years has been slightly variable, with comparable data.Keywords: allergens, food, egg proteins, immunoassay
Procedia PDF Downloads 13625338 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden
Authors: Vivianne Aggestam
Abstract:
Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use
Procedia PDF Downloads 45425337 Desired Flow of Radioactive Materials from Logistics Service Quality Perspective
Authors: Tuğçe Yavaş Akış
Abstract:
In recent years, due to an increased use of radioactive materials, radioactive sources are constantly being transported via air, road and ocean ways for medical, industrial, research etc. purposes throughout the world. The quantity of radioactive materials transported all around the world varies from negligible quantities in shipments of consumer products to very large quantities in shipments of irradiated nuclear fuel. Radioactive materials have been less attractive for social science researchers in literature. In this study, it is aimed to discover desired flow of radioactive materials from logistics service quality (LSQ) perspective. In doing so, case study approach will be employed by using secondary data collected from one of the world’s leading transportation companies’ customer care system reports. Movement of radioactive cargoes containing IR-192 and logistics process will be analyzed with the help of logistics service quality dimensions. Based on the case study that will be conducted, interaction between dimensions, the importance of each dimension in desired flow, and their relevance with desired flow of radioactive materials will be explained. This study will bring out the desired flow of radioactive materials transportation and be a guide for all other companies, employees and researchers.Keywords: logistics service quality, LSQ dimension , radioactive material, transportation
Procedia PDF Downloads 23925336 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units
Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro
Abstract:
In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.Keywords: capacitated clustering, k-means, genetic algorithm, districting problems
Procedia PDF Downloads 19825335 Ethical Issues around Online Marketing to Children
Authors: Chris Preston
Abstract:
As we devise ever more sophisticated methods of on-line marketing, devising systems that are able to reach into the everyday lives of consumers, we are confronted by a generation of children who face unprecedented intervention by commercial organisations into young minds, via electronic devices, and whether by computer, tablet or phone, such children have been somehow reduced to the status of their devices, with little regard for their well being as individuals. This discussion paper seeks to draw attention to such practice and questions the ethics of digital marketing methods.Keywords: online marketing to children, online research of children, online targeting of children, consumer rights, ethics
Procedia PDF Downloads 39225334 Factors That Influence Willingness to Pay for Theatre Performances: The Case of Lithuanian National Drama Theatre
Authors: Rusne Kregzdaite
Abstract:
The value of the cultural sector stems from the symbolic exploration that differentiates cultural organisations from other product or service organisations. As a result, the cultural sector has a dual impact on the socio-economic system: the economic value (expressed in terms of market relations) created influences the dynamics of the country's financial indicators, while the cultural (non-market) value indirectly contributes to the welfare of the state through changes in societal values, creativity transformations and cultural needs of the country. Measurement of indirect (cultural value) impacts is difficult, but in the case of the cultural sector (especially when it comes to economically inefficient state-funded culture), it helps to reveal the essential characteristics of the sector. The study aims to analyze the value of cultural organisations that are invisible in market processes and to base it on quantified calculations. This was be done by analyzing the usefulness of the consumer, incorporating not only the price paid but also the social and cultural decision-making factors that determine the spectator's choice (time dedicated for a visit, additional costs, content, previous experiences, corporate image). This may reflect the consumer's real choice to consume (all the costs he incurs may be considered the financial equivalent of his experience with the cultural establishment). The research methodology was tested by analyzing the performing arts sector and applying methods to the Lithuanian national drama theatre case. The empirical research consisted of a survey (more than 800 participants) of Lithuanian national drama theatre visitors to different performances. The willingness to pay and travel costs methods were used. Analysis of different performances lets identifies the factor that increases willingness to pay for the performance and affects theatre attendance. The research stresses the importance of cultural value and social perspective of the cultural sector and relates it to the discussions of public funding of culture.Keywords: cultural economics, performing arts, willingness to pay, travel cost analysis, performing arts management
Procedia PDF Downloads 89