Search results for: bone conducted vibration
11861 Three-Dimensional Measurement and Analysis of Facial Nerve Recess
Authors: Kang Shuo-Shuo, Li Jian-Nan, Yang Shiming
Abstract:
Purpose: The three-dimensional anatomical structure of the facial nerve recess and its relationship were measured by high-resolution temporal bone CT to provide imaging reference for cochlear implant operation. Materials and Methods: By analyzing the high-resolution CT of 160 cases (320 pleural ears) of the temporal bone, the following parameters were measured at the axial window niche level: 1. The distance between the facial nerve and chordae tympani nerve d1; 2. Distance between the facial nerve and circular window niche d2; 3. The relative Angle between the facial nerve and the circular window niche a; 4. Distance between the middle point of the face recess and the circular window niche d3; 5. The relative angle between the middle point of the face recess and the circular window niche b. Factors that might influence the anatomy of the facial recess were recorded, including the patient's sex, age, and anatomical variation (e.g., vestibular duct dilation, mastoid gas type, mothoid sinus advancement, jugular bulbar elevation, etc.), and the correlation between these factors and the measured facial recess parameters was analyzed. Result: The mean value of face-drum distance d1 is (3.92 ± 0.26) mm, the mean value of face-niche distance d2 is (5.95 ± 0.62) mm, the mean value of face-niche Angle a is (94.61 ± 9.04) °, and the mean value of fossa - niche distance d3 is (6.46 ± 0.63) mm. The average fossa-niche Angle b was (113.47 ± 7.83) °. Gender, age, and anterior sigmoid sinus were the three factors affecting the width of the opposite recess d1, the Angle of the opposite nerve relative to the circular window niche a, and the Angle of the facial recess relative to the circular window niche b. Conclusion: High-resolution temporal bone CT before cochlear implantation can show the important anatomical relationship of the facial nerve recess, and the measurement results have clinical reference value for the operation of cochlear implantation.Keywords: cochlear implantation, recess of facial nerve, temporal bone CT, three-dimensional measurement
Procedia PDF Downloads 1811860 Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review
Authors: Shantanu Vyas, Neerja Meena
Abstract:
Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes.Keywords: cosmetic correction and facial assemetry, aesthetic results, facial infiltration, surgery
Procedia PDF Downloads 7611859 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis
Procedia PDF Downloads 30911858 Effectiveness of Physiotherapy in Hand Dysfunction of Leukemia Patients with Chronic Musculoskeletal Graft versus Host Disease Post Bone Marrow Transplant
Authors: Mohua Chatterjee, Rajib De
Abstract:
Introduction: Bone Marrow Transplant (BMT) is often performed to treat patients with various types of leukemia. A majority of these patients develop complications like chronic musculoskeletal GVHD post-BMT where patients get scleroderma, pain and restricted range of motion of joints of hand. If not treated early, it may cause permanent deformity of hand. This study was done to find the effectiveness of physiotherapy in hand dysfunction caused due to chronic musculoskeletal GVHD of leukemia patients after BMT. Methodology: 23 patients diagnosed with leukemia and having musculoskeletal GVHD were treated with a set of exercises including active exercises and stretching. The outcome was measured by Cochin Hand Function Scale (CHFS) at baseline and after four weeks of intervention. Results: Two patients were not able to carry out exercises beyond two weeks due to relapse of disease and one patient defaulted. It was found that all the patients who received physiotherapy had significant improvement in hand function. Mean CHFS decreased from 63.67 to 27.43 (P value < 0.001) indicating improvement in hand function after four weeks of physiotherapy. Conclusion: Early intervention of physiotherapy is effective in reducing hand dysfunction of leukemia patients with musculoskeletal GVHD post-BMT.Keywords: bone marrow transplant, hand dysfunction, leukemia, musculoskeletal graft versus host disease, physiotherapy
Procedia PDF Downloads 24111857 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 13311856 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review
Authors: Bochen Jia, Francesco Zhu
Abstract:
People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.Keywords: virtual reality, sense of presence, self-awareness, literature review
Procedia PDF Downloads 13111855 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective
Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin
Abstract:
Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis
Procedia PDF Downloads 26311854 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia
Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei
Abstract:
Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration
Procedia PDF Downloads 19111853 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 4511852 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment
Authors: Khaled Harrar, Rachid Jennane
Abstract:
The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an age-matched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.Keywords: osteoporosis, fractal dimension, fractal signature, bone mineral density
Procedia PDF Downloads 42511851 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 8511850 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis
Authors: Lokanath Barik, Abinash Kumar Swain
Abstract:
This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA
Procedia PDF Downloads 8411849 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications
Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia
Abstract:
In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 5811848 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network
Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti
Abstract:
Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.Keywords: unbalance, parallel misalignment, combined faults, vibration signals
Procedia PDF Downloads 35511847 Nanabis™: A Non-Opioid Alternative for Management of Cancer Bone Pain
Authors: Sean Hall
Abstract:
Prior to COVID-19, the world was preoccupied with opioids, effectiveness versus risk, and specifically toxicity versus abuse. Historically underpinning opioid use was a concept of safety. As use over time and real-world data evolved, a pursuit for efficacy associated with non-opioid alternatives became mainstream. On January 8, 2021, the US signed back into the opioid problem, with these two fundamental questions still unresolved. The author will share the current progression of a lead non-opioid cancer bone pain candidate, NanaBis™. NanaBis™ represents two innovative factors: The active ingredients are from cannabinoids; these ingredients are in a proprietary sub-micron delivery platform, NanoCelle®. The author will offer an opinion piece, potentiating the future role of delivery platforms in medicine to increase both patient safety and compliance.Keywords: NanaBis, nanoCelle, opioids, toxicity
Procedia PDF Downloads 8711846 Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle
Authors: Sridhar S, Govinda Raj Mandela, Aruna Mangalpady
Abstract:
In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study.Keywords: low profile dump trucks, hand arm vibrations, exposure action value, underground mines
Procedia PDF Downloads 13211845 Bone Mineral Density in Egyptian Children with Familial Mediterranean Fever
Authors: S. Salah, S. A. El-Masry, H. F. Sheba, R. A. El-Banna, W. Saad
Abstract:
Background: Familial Mediterranean fever (FMF) has episodic or subclinical inflammation that may lead to a decrease in bone mineral density (BMD). Objective: To assess BMD in Egyptian children with FMF on genetic basis. Subjects and Methods: A cross sectional study included 45 FMF patients and 25 control children of both sexes, with age range between 3-16 years old. The patients were reclassified into 2 groups: Group I (A) 23 cases used colchicines for 1 month or less, and Group I (B) 22 cases used colchicines for more than 6 months. For both patients and control, MEFV mutations were defined using molecular genetics technique and BMD was measured by DXA at 2 sites: proximal femur and the lumber spines. Results: four frequent gene mutations were found in the patient group: E148Q (35.6%), V726A (33.3%), M680I (28.9.0%) and M694V (2.2%). There were also 4 heterozygous gene mutations in 40% of control children. Patients received colchicines treatment for less than 1 month had highly significant lower values of BMD at femur and lumber spines than control children (p<0.05). Patients received colchicines treatment for more than 6 months had improved values of BMD at femur compared to control, but there were still significant differences between them at lumbar spine (p>0.05). There are insignificant effect of type of gene mutation on BMD and the risk of osteopenia among the patients. Conclusion: FMF had significant effect on BMD. However, regular use of colchicines treatment improves this effect mainly at femur.Keywords: familial mediterranean fever, bone mineral density, genes, children
Procedia PDF Downloads 41211844 Significance of High Specific Speed in Circulating Water Pump, Which Can Cause Cavitation, Noise and Vibration
Authors: Chandra Gupt Porwal
Abstract:
Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge re-circulation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal re-circulation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. The author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios > 1.5, for future projects and Nss be limited to 8500 -9000 for cavitation free operation.Keywords: best efficiency point (BEP), net positive suction head NPSHA, NPSHR, specific speed NS, suction specific speed NSS
Procedia PDF Downloads 25411843 Rutin C Improve Osseointegration of Dental Implant and Healing of Soft Tissue
Authors: Noha Mohammed Ismael Awad Eladal, Aala Shoukry Emara
Abstract:
Background: Wound healing after dental implant surgery is critical to the procedure's success. The aim of this study was to explore the effects of rutin+vitamin C supplementation in wound healing following the placement of dental implants. Methodology: There were 20 participants in this randomized controlled clinical trial who needed dental implants to replace missing teeth. Patients were divided into two groups, and group A received dental implants. Group B received dental implants with vitamin C administration. Follow-up appointments were performed on day 3, day 7, and day 14 post-surgery, during which soft tissue healing and pain response scores were evaluated using the visual analog scale. Postoperative digital panoramas were taken immediately after surgery, 3 months and 6 months postoperatively. Changes in bone density along with the bone-implant interface at the mesial, distal and apical sides were assessed using the digora software. Results: An independent t-test was used to compare the means of variables between the two groups. At the same time, repeated measures were employed to compare the means of variables between two groups. ANOVA was used to compare bone density for the same group at different dates. Significant increased differences were observed at the mesial, distal and apical sides Surrounding the implants of both groups per time. However, the rate of increase was significantly higher in group B The mean difference at the mesial side after 6 months was 21.99 ± 5.48 in the group B and 14.21 ± 4.95 in group A, while it read 21.74 ± 3.56 in the group B and 10.78 ± 3.90 in group A at the distal side and was 18.90 ± 5.91 in the group B and 10.39 ± 3.49 group A at the apical side. Significance was recorded at P = 0.004, P = 0.0001, and 0.001 at the mesial, distal and apical sides respectively. The mean pain score and wound healing were significantly higher in group A as compared to group B, respectively. Conclusion: The rutin c + vitamin c group significantly promoted bone healing and speeded up the osseointegration process and improved soft tissue healing.Keywords: osseointegration, soft tissue, rutin c, dental implant
Procedia PDF Downloads 15111842 Study on Roll Marks of Stainless Steel in Rolling Mill
Authors: Cai-Wan Chang-Jian, Han-Ting Tsai
Abstract:
In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks.Keywords: roll mark, plane strain, rolling mill, stainless steel
Procedia PDF Downloads 45511841 Vascular Foramina of the Capitate Bone of the Hand – an Anatomical Study
Authors: Latha V. Prabhu, B.V. Murlimanju, P.J. Jiji, Mangala M. Pai
Abstract:
Background: The capitate is the largest among the carpal bones. There exists no literature about the vascular foramina of the capitate bone. The objective of the present study was to investigate the morphology and number of the nutrient foramina in the cadaveric dried capitate bones of the Indian population. Methods: The present study included 59 capitate bones (25 right sided and 34 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular and articular surfaces. The foramina were observed at the medial, lateral, palmar and dorsal surfaces of the capitate bones. The foramina were ranged from 6 to 23 in each capitate bone. In the medial surface, the foramina ranged from 1 to 6, lateral surface from 0 to 7, the foramina ranged between 0 and 5 in the palmar surface. However most of the foramina were located at the dorsal surface which ranged from 3 to 11. Conclusion: We believe that the present study has provided additional data about the nutrient foramina of the capitate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The knowledge about the foramina is also important to the radiologists to prevent the misinterpretation of the findings in the x ray and computed tomogram scan films. The foramina may mimick like erosions and ossicles. The morphological knowledge of the vasculature, their foramina of entry and number is required to understand the concepts in the avascular necrosis of the capitate.Keywords: avascular necrosis, capitate, morphology, nutrient foramen
Procedia PDF Downloads 34411840 Competing Risks Modeling Using within Node Homogeneity Classification Tree
Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya
Abstract:
To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree
Procedia PDF Downloads 27311839 Screening of Osteoporosis in Aging Populations
Authors: Massimiliano Panella, Sara Bortoluzzi, Sophia Russotto, Daniele Nicolini, Carmela Rinaldi
Abstract:
Osteoporosis affects more than 200 million people worldwide. About 75% of osteoporosis cases are undiagnosed or diagnosed only when a bone fracture occurs. Since osteoporosis related fractures are significant determinants of the burden of disease and health and social costs of aging populations, we believe that this is the early identification and treatment of high-risk patients should be a priority in actual healthcare systems. Screening for osteoporosis by dual energy x-ray absorptiometry (DEXA) is not cost-effective for general population. An alternative is pulse-echo ultrasound (PEUS) because of the minor costs. To this end, we developed an early detection program for osteoporosis with PEUS, and we evaluated is possible impact and sustainability. We conducted a cross-sectional study including 1,050 people in Italy. Subjects with >1 major or >2 minor risk factors for osteoporosis were invited to PEUS bone mass density (BMD) measurement at the proximal tibia. Based on BMD values, subjects were classified as healthy subjects (BMD>0.783 g/cm²) and pathological including subjects with suspected osteopenia (0.783≤BMD>0.719 g/cm²) or osteoporosis (BMD ≤ 0.719 g/cm²). The responder rate was 60.4% (634/1050). According to the risk, PEUS scan was recommended to 436 people, of whom 300 (mean age 45.2, 81% women) accepted to participate. We identified 240 (80%) healthy and 60 (20%) pathological subjects (47 osteopenic and 13 osteoporotic). We observed a significant association between high risk people and reduced bone density (p=0.043) with increased risks for female gender, older ages, and menopause (p<0.01). The yearly cost of the screening program was 8,242 euros. With actual Italian fracture incidence rates in osteoporotic patients, we can reasonably expect in 20 years that at least 6 fractures will occur in our sample. If we consider that the mean costs per fracture in Italy is today 16,785 euros, we can estimate a theoretical cost of 100,710 euros. According to literature, we can assume that the early treatment of osteoporosis could avoid 24,170 euros of such costs. If we add the actual yearly cost of the treatments to the cost of our program and we compare this final amount of 11,682 euros to the avoidable costs of fractures (24,170 euros) we can measure a possible positive benefits/costs ratio of 2.07. As a major outcome, our study let us to early identify 60 people with a significant bone loss that were not aware of their condition. This diagnostic anticipation constitutes an important element of value for the project, both for the patients, for the preventable negative outcomes caused by the fractures, and for the society in general, because of the related avoidable costs. Therefore, based on our finding, we believe that the PEUS based screening performed could be a cost-effective approach to early identify osteoporosis. However, our study has some major limitations. In fact, in our study the economic analysis is based on theoretical scenarios, thus specific studies are needed for a better estimation of the possible benefits and costs of our program.Keywords: osteoporosis, prevention, public health, screening
Procedia PDF Downloads 12311838 Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment
Authors: M. M. Atashi, P. Malekzadeh
Abstract:
A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.Keywords: out of plane, free vibration, curved beams, functionally graded, thermal environment
Procedia PDF Downloads 35811837 Open Joint Surgery for Temporomandibular Joint Internal Derangement: Wilkes Stages III-V
Authors: T. N. Goh, M. Hashmi, O. Hussain
Abstract:
Temporomandibular joint (TMJ) dysfunction (TMD) is a condition that may affect patients via restricted mouth opening, significant pain during normal functioning, and/or reproducible joint noise. TMD includes myofascial pain, TMJ functional derangements (internal derangement, dislocation), and TMJ degenerative/inflammatory joint disease. Internal derangement (ID) is the most common cause of TMD-related clicking and locking. These patients are managed in a stepwise approach, from patient education (homecare advice and analgesia), splint therapy, physiotherapy, botulinum toxin treatment, to arthrocentesis. Arthrotomy is offered when the aforementioned treatment options fail to alleviate symptoms and improve quality of life. The aim of this prospective study was to review the outcomes of jaw joint open surgery in TMD patients. Patients who presented from 2015-2022 at the Oral and Maxillofacial Surgery Department in the Doncaster NHS Foundation Trust, UK, with a Wilkes classification of III -V were included. These patients underwent either i) discopexy with bone-anchoring suture (9); ii) intrapositional temporalis flap (ITF) with bone-anchoring suture (3); iii) eminoplasty and discopexy with suturing to the capsule (3); iii) discectomy + ITF with bone-anchoring suture (1); iv) discoplasty + bone-anchoring suture (1); v) ITF (1). Maximum incisal opening (MIO) was assessed pre-operatively and at each follow-up. Pain score, determined via the visual analogue scale (VAS, with 0 being no pain and 10 being the worst pain), was also recorded. A total of 18 eligible patients were identified with a mean age of 45 (range 22 - 79), of which 16 were female. The patients were scored by Wilkes Classification as III (14), IV (1), or V (4). Twelve patients had anterior disc displacement without reduction (66%) and six had degenerative/arthritic changes (33%) to the TMJ. The open joint procedure resulted in an increase in MIO and reduction in pain VAS and for the majority of patients, across all Wilkes Classifications. Pre-procedural MIO was 22.9 ± 7.4 mm and VAS was 7.8 ± 1.5. At three months post-procedure there was an increase in MIO to 34.4 ± 10.4 mm (p < 0.01) and a decrease in the VAS to 1.5 ± 2.9 (p < 0.01). Three patients were lost to follow-up prior to six months. Six were discharged at six month review and five patients were discharged at 12 months review as they were asymptomatic with good mouth opening. Four patients are still attending for annual botulinum toxin treatment. Two patients (Wilkes III and V) subsequently underwent TMJ replacement (11%). One of these patients (Wilkes III) had improvement initially to MIO of 40 mm, but subsequently relapsed to less than 20 mm due to lack of compliance with jaw rehabilitation device post-operatively. Clinical improvements in 89% of patients within the study group were found, with a return to near normal MIO range and reduced pain score. Intraoperatively, the operator found bone-anchoring suture used for discopexy/discoplasty more secure than the soft tissue anchoring suturing technique.Keywords: bone anchoring suture, open temporomandibular joint surgery, temporomandibular joint, temporomandibular joint dysfunction
Procedia PDF Downloads 10611836 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: smart material, on-line differential artificial neural network, active control, finite element method
Procedia PDF Downloads 21211835 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control
Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha
Abstract:
This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.Keywords: attitude control, flexible satellite, vibration control, disturbance observer
Procedia PDF Downloads 8711834 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice
Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti
Abstract:
Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.Keywords: analogue rice, taro, seaweed, collagen
Procedia PDF Downloads 26511833 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis
Procedia PDF Downloads 50211832 An Experimental Study of Automotive Drum Brake Vibrations
Authors: Nouby Ghazaly
Abstract:
The present paper investigates experimentally the effect coefficient of friction at different operation conditions on the variation of the brake temperature, brake force, and brake vibration with the braking time. All the experimental tests were carried out using brake dynamometer which designed and constructed in Vehicle Dynamic Laboratory. The results indicate that the brake temperature increases with the increase of the normal force and sliding speed especially with the increase of the braking time. The normal force has the effect on increasing the brake force. On the contrary, the vehicle speed has the effect on decreasing the brake force. Both the normal force and sliding speed affect the brake vibration according to the friction behavior.Keywords: brake dynamometer, coefficient of friction, drum brake vibrations, friction behavior
Procedia PDF Downloads 311