Search results for: block linear multistep methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18184

Search results for: block linear multistep methods

17644 Optimal Production Planning in Aromatic Coconuts Supply Chain Based on Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: aromatic coconut, supply chain management, production planning, mixed-integer linear programming

Procedia PDF Downloads 437
17643 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 426
17642 Development and Validation of an Electronic Module in Linear Motion for First Year College Students of Iloilo City

Authors: Donna H. Gabor

Abstract:

This study aimed to develop and validate an electronic module in physics for first-year college students of Iloilo and find out if there would be a significant difference in the performance of students before and after using the electronic module. The e-module was composed of one topic with two sub-lessons in linear motion (kinematics). The participants of the study were classified into three groups: the subject matter experts who are physics instructors who suggested the content, physical appearance, and limitations of the e-module; the IT experts who are active both in teaching and developing computer programs; and 28 students divided into two groups, 15 in the pilot group and 13 in the final test group. A researcher created 30 items checklist form (difficulty of a sample problem, comprehension, application, and definition of terms) was prepared and validated by the experts in subject matter for gathering data. To test the difference in student performance in physics, the researcher prepared an achievement test containing 25 items, multiple choices. The findings revealed that there was an increase in the performance of students in the pretest and post-test. T-test results revealed that there was a significant difference in the test scores of the students before and after using the module which can be used as a future reference for linear motion as an additional teaching tool in physics.

Keywords: electronic module, kinematics, linear motion, physics

Procedia PDF Downloads 111
17641 Fault-Tolerant Predictive Control for Polytopic LPV Systems Subject to Sensor Faults

Authors: Sofiane Bououden, Ilyes Boulkaibet

Abstract:

In this paper, a robust fault-tolerant predictive control (FTPC) strategy is proposed for systems with linear parameter varying (LPV) models and input constraints subject to sensor faults. Generally, virtual observers are used for improving the observation precision and reduce the impacts of sensor faults and uncertainties in the system. However, this type of observer lacks certain system measurements which substantially reduce its accuracy. To deal with this issue, a real observer is then designed based on the virtual observer, and consequently a real observer-based robust predictive control is designed for polytopic LPV systems. Moreover, the proposed observer can entirely assure that all system states and sensor faults are estimated. As a result, and based on both observers, a robust fault-tolerant predictive control is then established via the Lyapunov method where sufficient conditions are proposed, for stability analysis and control purposes, in linear matrix inequalities (LMIs) form. Finally, simulation results are given to show the effectiveness of the proposed approach.

Keywords: linear parameter varying systems, fault-tolerant predictive control, observer-based control, sensor faults, input constraints, linear matrix inequalities

Procedia PDF Downloads 184
17640 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 47
17639 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 490
17638 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well-known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: functionally graded material, pressure, steady state creep, thick-cylinder

Procedia PDF Downloads 455
17637 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function

Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana

Abstract:

Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.

Keywords: HSV space, histology, enhancement, image

Procedia PDF Downloads 312
17636 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 377
17635 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 532
17634 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry

Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu

Abstract:

The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.

Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation

Procedia PDF Downloads 395
17633 Structural Evaluation of Cell-Filled Pavement

Authors: Subrat Roy

Abstract:

This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented.

Keywords: cell-filled pavement, WBM, FWD, Moorum

Procedia PDF Downloads 282
17631 Propagation of Weak Non-Linear Waves in Non-Equilibrium Flow

Authors: J. Jena, Monica Saxena

Abstract:

In this paper, the propagation of weak nonlinear waves in non-equilibrium flow has been studied in detail using the perturbation method. The expansive action of receding piston undergoing infinite acceleration has been discussed. Central expansion fan, compression waves and shock fronts have been discussed and the solutions up to the first order in the characteristic plane and physical plane have been obtained.

Keywords: Characteristic wave front, weak non-linear waves, central expansion fan, compression waves

Procedia PDF Downloads 346
17630 Bulk Amounts of Linear and Cyclic Polypeptides on Our Hand within a Short Time

Authors: Yu Zhang, Il Kim

Abstract:

Polypeptides with defined peptide sequences illustrate the power of remarkable applications in drug delivery, tissue engineering, sensing and catalysis. Especially the cyclic polypeptides, the distinctive topological architecture imparts many characteristic properties comparing to linear polypeptides. Here, a facile and highly efficient strategy for the synthesis of linear and cyclic polypeptides is reported using N-heterocyclic carbenes (NHCs)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) in the presence or absence of primary amine initiator. The polymerization proceeds rapidly in a quasi-living manner, allowing access to linear and cyclic polypeptides of well-defined chain length and narrow polydispersity, as evidenced by nuclear magnetic resonance spectrum (1H NMR and 13C NMR spectra) and size exclusion chromatography (SEC) analysis. The cyclic architecture of the polypeptides was further verified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra (MALDI-TOF MS) and electrospray ionization (ESI) mass spectra, as well as viscosity studies. This approach can also simplify workup procedures and make bulk scale synthesis possible, which thereby opens avenues for practical uses in diverse areas, opening up the new generation of polypeptide synthesis.

Keywords: α-amino acid N-carboxyanhydrides, living polymerization, polypeptides, N-heterocyclic carbenes, ring-opening polymerization

Procedia PDF Downloads 149
17629 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 138
17628 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 126
17627 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems

Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion

Abstract:

One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.

Keywords: ice accretion, interpolation, mesh deformation, radial basis functions

Procedia PDF Downloads 290
17626 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 260
17625 Banks Profitability Indicators in CEE Countries

Authors: I. Erins, J. Erina

Abstract:

The aim of the present article is to determine the impact of the external and internal factors of bank performance on the profitability indicators of the CEE countries banks in the period from 2006 to 2012. On the basis of research conducted abroad on bank and macroeconomic profitability indicators, in order to obtain research results, the authors evaluated return on average assets (ROAA) and return on average equity (ROAE) indicators of the CEE countries banks. The authors analyzed profitability indicators of banks using descriptive methods, SPSS data analysis methods as well as data correlation and linear regression analysis. The authors concluded that most internal and external indicators of bank performance have no direct effect on the profitability of the banks in the CEE countries. The only exceptions are credit risk and bank size which affect one of the measures of bank profitability–return on average equity.

Keywords: banks, CEE countries, profitability ROAA, ROAE

Procedia PDF Downloads 344
17624 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.

Keywords: passive control system, damping devices, viscous dampers, control algorithm

Procedia PDF Downloads 448
17623 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 136
17622 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria

Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe

Abstract:

This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.

Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation

Procedia PDF Downloads 304
17621 Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria

Authors: Iliya Bitrus Abaje

Abstract:

This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area.

Keywords: anomalies, linear trend, rainfall, temperature

Procedia PDF Downloads 291
17620 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 361
17619 Studying Second Language Development from a Complex Dynamic Systems Perspective

Authors: L. Freeborn

Abstract:

This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.

Keywords: dynamic systems theory, mixed methods, research design, second language development

Procedia PDF Downloads 112
17618 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Authors: Mantai Chen, Johnny Ching Ming Ho

Abstract:

The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.

Keywords: beams, equivalent concrete stress block, flexural strength, strain gradient

Procedia PDF Downloads 419
17617 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 268
17616 Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation

Authors: Jatindranath Gain, Madhumita DasSarkar, Sudakshina Kundu

Abstract:

Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation.

Keywords: quantum computing, quasicrystals, Multiple Quantum wells (MQWs), transfer matrix method, fibonacci anyons, quantum hall effect, nanophotonics

Procedia PDF Downloads 361
17615 Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties

Authors: Bo Keun Lee, Doo Yeon Kwon, Ji Hoon Park, Gun Hee Lee, Ji Hye Baek, Heung Jae Chun, Young Joo Koh, Moon Suk Kim

Abstract:

Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier.

Keywords: thermo-responsive material, zwitterionic, hydrophobic, crystallization, phase transition

Procedia PDF Downloads 491