Search results for: active and reactive power
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9930

Search results for: active and reactive power

9390 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 117
9389 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 205
9388 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR

Procedia PDF Downloads 414
9387 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein

Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner

Abstract:

C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.

Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.

Procedia PDF Downloads 43
9386 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 213
9385 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 454
9384 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK

Authors: Abdulatif Abdulsalam, Mohamed Shaban

Abstract:

This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.

Keywords: power electronics, machine, MATLAB, simulink

Procedia PDF Downloads 333
9383 A New Resonance Solution to Suppress the Voltage Stresses in the Forward Topology Used in a Switch Mode Power Supply

Authors: Maamar Latroch, Mohamed Bourahla

Abstract:

Forward topology used in switch mode power supply (SMPS) is one of the most famous configuration feeding DC systems such as telecommunication systems and other specific applications where the galvanic isolation is required. This configuration benefits of the high frequency feature of the transformer to provide a small size and light weight of the over all system. However, the stresses existing on the power switch during an ON/OFF commutation limit the transmitted power to the DC load. This paper investigates the main causes of the stresses in voltage existing during a commutation cycle and suggest a low cost solution that eliminates the overvoltage. As a result, this configuration will yield the possibility of the use of this configuration in higher power applications. Simulation results will show the efficiency of the presented method.

Keywords: switch mode power supply, forward topology, resonance topology, high frequency commutation

Procedia PDF Downloads 422
9382 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).

Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant

Procedia PDF Downloads 261
9381 Nation Branding as Reframing: From the Perspective of Translation Studies

Authors: Ye Tian

Abstract:

Soft power has replaced hard power and become one of the most attractive ways nations pursue to expand their international influence. One of the ways to improve a nation’s soft power is to commercialise the country and brand or rebrand it to the international audience, and thus attract interests or foreign investments. In this process, translation has often been regarded as merely a tool, and researches in it are either in translating literature as culture export or in how (in)accuracy of translation influences the branding campaign. This paper proposes to analyse nation branding campaign with framing theory, and thus gives an entry for translation studies to come to a central stage in today’s soft power research. To frame information or elements of a text, an event, or, as in this paper, a nation is to put them in a mental structure. This structure can be built by outsiders or by those who create the text, the event, or by citizens of the nation. To frame information like this can be regarded as a process of translation, as what translation does in its traditional meaning of ‘translating a text’ is to put a framework on the text to, deliberately or not, highlight some of the elements while hiding the others. In the discourse of nations, then, people unavoidably simplify a national image and put the nation into their imaginary framework. In this way, problems like stereotype and prejudice come into being. Meanwhile, if nations seek ways to frame or reframe themselves, they make efforts to have in control what and who they are in the eyes of international audiences, and thus make profits, economically or politically, from it. The paper takes African nations, which are usually perceived as a whole, and the United Kingdom as examples to justify passive and active framing process, and assesses both positive and negative influence framing has on nations. In conclusion, translation as framing causes problems like prejudice, and the image of a nation is not always in the hands of nation branders, but reframing the nation in a positive way has the potential to turn the tide.

Keywords: framing, nation branding, stereotype, translation

Procedia PDF Downloads 137
9380 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 653
9379 Power HEMTs Transistors for Radar Applications

Authors: A. boursali, A. Guen Bouazza, M. Khaouani, Z. Kourdi, B. Bouazza

Abstract:

This paper presents the design, development and characterization of the devices simulation for X-Band Radar applications. The effect of an InAlN/GaN structure on the RF performance High Electron Mobility Transistor (HEMT) device. Systematic investigations on the small signal as well as power performance as functions of the drain biases are presented. Were improved for X-band applications. The Power Added Efficiency (PAE) was achieved over 23% for X-band. The developed devices combine two InAlN/GaN HEMTs of 30nm gate periphery and exhibited the output power of over 50W. An InAlN/GaN HEMT with 30nm gate periphery was developed and exhibited the output power of over 120W.

Keywords: InAlN/GaN, HEMT, RF analyses, PAE, X-Band, radar

Procedia PDF Downloads 545
9378 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 341
9377 Energy-Dense and High-Power Li-Cl₂/I₂ Batteries by Reversible Chemical Bonds

Authors: Pei Li, Chunyi Zhi

Abstract:

Conversion-type lithium-ion batteries show great potential as high-energy-density, low-cost and sustainable alternatives to current transition-metal-based intercalation cells. Li-Cl₂/Li⁻I₂ conversion batteries, based on anionic redox reactions of Cl⁻/Cl⁰ or I⁻/I⁰, are highly attractive due to their superior voltage and capacity. However, a redox-active and reversible chlorine cathode has not been developed in organic electrolytes. And thermodynamic instability and shuttling issues of iodine cathodes have plagued the active iodine loading, capacity retention and cyclability. By reversible chemical bonds, we develop reversible chlorine redox reactions in organic electrolytes with interhalogen bonds between I and Cl for Li-I₂ batteries and develop a highly thermally stable I/I₃--bonded organic salts with iodine content up to 80% as cathode materials for the rechargeable Li-I₂ batteries. The demonstration of reversible chemical bonds enabled rechargeable Li-halogen batteries opens a new avenue to develop halogen compound cathodes.

Keywords: conversion-type, chlorine, halogen cathode, high energy density, iodine, interhalogen bond, lithium-ion batteries

Procedia PDF Downloads 65
9376 Child Rights in the Context of Psychiatric Power

Authors: Dmytro D. Buiadzhy

Abstract:

The modern psychiatric discourse proves the existence of the direct ties between the children's mental health and their success in life as adults. The unresolved mental health problems in childhood are likely to lead individuals to poverty, isolation, and social exclusion as stated by Marcus Richards. Such an approach justifies the involvement of children in the view of supervision and control of power. The discourse, related to the mental health of children, provides a tight impact of family, educational institutions and medical authorities on the child through any manifestations of his psychic, having signs of "abnormality.” Throughout the adult life, the individual continues to feel the pressure of power through legal, political, and economic institutions that also appeal to the mental health regulation. The juvenile law declares the equality of a child and an adult, but in fact simply delegates the powers of parents to impersonal social institutions of the guardianship, education, and social protection. The psychiatric power in this study is considered in accordance with the Michel Foucault’s concept of power as a manifestation of "positive" technologies of power, which include various manifestations of subjectivity, in particular children’s one, in a view of supervision and control of the state power. The main issue disclosed in this paper is how weakening of the parental authority, in the context of legislative ratification of the child rights, strengthens the other forms of power over children, especially the psychiatric power, which justifies and affects the children mancipation.

Keywords: child rights, psychiatric power, discourse, parental authority

Procedia PDF Downloads 330
9375 On the Well-Posedness of Darcy–Forchheimer Power Model Equation

Authors: Johnson Audu, Faisal Fairag

Abstract:

In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.

Keywords: porous media, power law, strong inertia, nonlinear, monotone type

Procedia PDF Downloads 297
9374 Modelling the Effect of Head and Bucket Splitter Angle on the Power Output of a Pelton Turbine

Authors: J. A. Ujam, J. L. Chukwuneke, C. H. Achebe, G. O. R. Ikwu

Abstract:

This work investigates the effect of head and bucket splitter angle on the power output of a pelton turbine (water turbine), so as to boost the efficiency of Hydro-electric power generation systems. A simulation program was developed using MatLab to depict the force generated by the bucket as the water jet strikes the existing splitter angle (100 to 150) and predicted (10 to 250) splitter angles. Result shows that in addition to the existing splitter angle, six more angles have been investigated for the two operating conditions to give maximum power. The angles are 250, 60 and 190 for high head and low flow with increased pressure while low head and high flow with decreased pressure are 230, 210 and 30 in order of the maximum generating power. The Turbine power output for simulation was more than that of the experiment. This was as a result of their head conditions and the bucket splitter angle.

Keywords: bucket splitter angle, force, head, modelling, pelton turbine, power output, shaft output

Procedia PDF Downloads 335
9373 Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator

Authors: Kittipong Tripetch

Abstract:

This paper proposes for the first time symbolic formula of the power spectrum of cross couple oscillator and its modified circuit. Many principle existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection of the other port of the circuit is zero, which is impossible in reality). Four Graphs of impedance parameters of cross couple oscillator is proposed. After that four graphs of Scattering parameters of cross couple oscillator will be shown.

Keywords: optimization, power spectrum, impedance parameters, scattering parameter

Procedia PDF Downloads 448
9372 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: frequency control, nuclear power generation, power system stability, system inertia

Procedia PDF Downloads 419
9371 21st Century Gunboat Diplomacy and Strategic Sea Areas

Authors: Mustafa Avsever

Abstract:

Throughout history, states have attached great importance to seas in terms of economic and security. Advanced civilizations have always founded in coastal regions. Over time, human being has tended to trade and naturally always aimed get more and more. Seas by covering 71% of the earth, provide the greatest economic opportunities for access to raw material resources and the world market. As a result, seas have become the most important areas of conflict over the course of time. Coastal states, use seas as a tool for defense zone, trade, marine transportation and power transfer, they have acquired colonies overseas and increased their capital, raw materials and labor. Societies, have increased their economic prosperity, though their navies in order to retain their welfare and achieve their foreign policy objectives. Sometimes they have imposed their demands through the use or threat of limited naval force in accordance with their interests that is gunboat diplomacy. Today we can see samples of gunboat diplomacy used in the Eastern Mediterranean, during Ukraine crisis, in dispute between North Korea and South Korea and the ongoing power struggle in Asia-Pacific. Gunboat diplomacy has been and continues to be applied consistently in solving problems by the stronger side of the problem. The purpose of this article is to examine using navy under the gunboat diplomacy as an active instrument of foreign policy and security policy and reveal the strategic sea areas in which gunboat diplomacy is used effectively in the matrix of international politics in the 21st century.

Keywords: gunboat diplomacy, maritime strategy, sea power, strategic sea lands

Procedia PDF Downloads 420
9370 Performance Analysis and Comparison of Various 1-D and 2-D Prime Codes for OCDMA Systems

Authors: Gurjit Kaur, Shashank Johri, Arpit Mehrotra

Abstract:

In this paper we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension i.e. time slots whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for OCDMA system on a single platform. Results shows that 1D Extended Prime Code (EPC) can support more number of active users compared to other codes but at the expense of larger code length which further increases the complexity of the code. Modified Prime Code (MPC) supports lesser number of active users at λc=2 but it has a lesser code length as compared to 1D prime code. Analysis shows that 2D prime code supports lesser number of active users than 1D codes but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.

Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa

Procedia PDF Downloads 490
9369 Using Fly Ash Based Synthetic Zeolite Permeable Reactive Barrier to Remove Arsenic, Cadmium, and their Mixture from Aqueous Solution

Authors: Mozhgan Bahadory, Gholam-Hossein Rostami

Abstract:

Over the next quarter of a century, the US government and the private sector will spend billions of dollars annually to clean the contaminated sites from pollution such as petroleum products, heavy metals, and solvents organic compounds. During the past three decades, almost 750,000 sites that require remediation have been reported to the United States federal and state agencies. Out of these contamination sites, approximately 300,000 are still in need of remediation. In these sites, the most widespread forms of contamination are petroleum products and heavy metals. At least half of US Department of Defense, US Department of Energy, Superfund sites, and Resource Conservation and Recovery Act (RCRA) sites have been reported to contain heavy metals. Heavy metals most often found in the contaminated water are lead, mercury, chromium, cadmium, arsenic, and zinc. This investigation emphasizes the elimination of arsenic and cadmium from aqueous solution. During the past several years, we developed a novel material called Alkali-Activated fly ash Material Permeable Reactive Barrier (AAM-PRB), which includes fly ash, fine aggregates, coarse aggregates, activating chemicals, and water. AAM can be produced with high permeability, 10-1 cm/s, then crushed into pelletized form. Laboratory experiments showed that water containing 10 ppm, 100 ppm, and 1000 ppm of arsenic and cadmium ion passing through AAM-PRB reduced to less than 0.1 ppm. However, water containing 10,000 ppm arsenic ion passing through AAM- PRB shows that the breakthrough was achieved. The removal of the mixture of arsenic and cadmium from aqueous solutions was also tested by using AAM-PRB. The results indicate that the efficiency of AAM-PRB for simultaneous removal of arsenic and cadmium from 10 ppm, 100 ppm, and 1,000 ppm were marginally below that of arsenic alone. Still, it was significantly lower for cadmium from the aqueous solution. The basic science behind removing heavy metal and microstructural investigation AAM-PRB will be the focus of our future work.

Keywords: arsenic, cadmium, contaminated water, fly ash, permeability, reactive barrier

Procedia PDF Downloads 51
9368 Investigation on Biomass as an Alternate Source for Power Generation

Authors: Narsimhulu Sanke, D. N. Reddy

Abstract:

The purpose of the paper is to discuss the biomass as a renewable source of energy for power generation. The setup is designed and fabricated in the Centre for Energy Technology (CET) and four different fuels are tested in the laboratory, but here the focus is on wood blocks (fuel) combustion with temperature, gas composition percentage by volume and the heating values.

Keywords: biomass, downdraft gasifier, power generation, renewable energy sources

Procedia PDF Downloads 522
9367 Paraplegic Dimensions of Asymmetric Warfare: A Strategic Analysis for Resilience Policy Plan

Authors: Sehrish Qayyum

Abstract:

In this age of constant technology, asymmetrical warfare could not be won. Attuned psychometric study confirms that screaming sometimes is more productive than active retaliation against strong adversaries. Asymmetric warfare is a game of nerves and thoughts with least vigorous participation for large anticipated losses. It creates the condition of paraplegia with partial but permanent immobility, which effects the core warfare operations, being screams rather than active retaliation. When one’s own power is doubted, it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of asymmetric warfare since the early WWI to WWII, WWII-to Cold War, and then to the current era in three chronological periods exposits that courage makes nations win the battle of warriors to battle of comrades. Asymmetric warfare has been most difficult to fight and survive due to unexpectedness and being lethal despite preparations. Thoughts before action may be the best-assumed strategy to mix Regional Security Complex Theory and OODA loop to develop the Paraplegic Resilience Policy Plan (PRPP) to win asymmetric warfare. PRPP may serve to control and halt the ongoing wave of terrorism, guerilla warfare, and insurgencies, etc. PRPP, along with a strategic work plan, is based on psychometric analysis to deal with any possible war condition and tactic to save millions of innocent lives such that lost in Christchurch New Zealand in 2019, November 2015 Paris attacks, and Berlin market attacks in 2016, etc. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a descriptive psychometric analysis of war conditions with generic application of probability tests to find the best possible options and conditions to develop PRPP for any adverse condition possible so far. Innovation in technology begets innovation in planning and action-plan to serve as a rheostat approach to deal with asymmetric warfare.

Keywords: asymmetric warfare, psychometric analysis, PRPP, security

Procedia PDF Downloads 119
9366 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell

Authors: Afshin Farahbakhsh, Hoda Khodadadi

Abstract:

In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.

Keywords: enzymatic electrode, fuel cell, immobilization, laccase

Procedia PDF Downloads 244
9365 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit

Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi

Abstract:

Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.

Keywords: combined cycle power plant, energy benchmarking, modelling, retrofit

Procedia PDF Downloads 289
9364 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 136
9363 Enhancing the Stability of Vietnamese Power System - from Theory to Practical

Authors: Edwin Lerch, Dirk Audring, Cuong Nguyen Mau, Duc Ninh Nguyen, The Cuong Nguyen, The Van Nguyen

Abstract:

The National Load Dispatch Centre of Electricity Vietnam (EVNNLDC) and Siemens PTI investigated the stability of the electrical 500/220 kV transportation system of Vietnam. The general scope of the investigations is improving the stability of the Vietnam power system and giving the EVNNLDC staff the capability to decide how to deal with expected stability challenges in the future, which are related to the very fast growth of the system. Rapid system growth leads to a very high demand of power transmission from North to South. This was investigated by stability studies of interconnected power system with neighboring countries. These investigations are performed in close cooperation and coordination with the EVNNLDC project team. This important project includes data collection, measurement, model validation and investigation of relevant stability phenomena as well as training of the EVNNLDC staff. Generally, the power system of Vietnam has good voltage and dynamic stability. The main problems are related to the longitudinal system with more power generation in the North and Center, especially hydro power, and load centers in the South of Vietnam. Faults on the power transmission system from North to South risks the stability of the entire system due to a high power transfer from North to South and high loading of the 500 kV backbone. An additional problem is the weak connection to Cambodia power system which leads to interarea oscillations mode. Therefore, strengthening the power transfer capability by new 500kV lines or HVDC connection and balancing the power generation across the country will solve many challenges. Other countermeasures, such as wide area load shedding, PSS tuning and correct SVC placement will improve and stabilize the power system as well. Primary frequency reserve should be increased.

Keywords: dynamic power transmission system studies, blackout prevention, power system interconnection, stability

Procedia PDF Downloads 334
9362 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 343
9361 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 360