Search results for: Mangrove forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1018

Search results for: Mangrove forest

478 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 292
477 Distribution and Historical Trends of PAHs Deposition in Recent Sediment Cores of the Imo River, SE Nigeria

Authors: Miranda I. Dosunmu, Orok E. Oyo-Ita, Inyang O. Oyo-Ita

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are a class of priority listed organic pollutants due to their carcinogenicity, mutagenity, acute toxicity and persistency in the environment. The distribution and historical changes of PAHs contamination in recent sediment cores from the Imo River were investigated using gas chromatography coupled with mass spectrometer. The concentrations of total PAHs (TPAHs) ranging from 402.37 ng/g dry weight (dw) at the surface layer of the Estuary zone (ESC6; 0-5 cm) to 92,388.59 ng/g dw at the near surface layer of the Afam zone (ASC5; 5-10 cm) indicate that PAHs contamination was localized not only between sample sites but also within the same cores. Sediment-depth profiles for the four (Afam, Mangrove, Estuary and illegal Petroleum refinery) cores revealed irregular distribution patterns in the TPAH concentrations except the fact that these levels became maximized at the near surface layers (5-10 cm) corresponding to a geological time-frame of about 1996-2004. This time scale coincided with the period of intensive bunkering and oil pipeline vandalization by the Niger Delta militant groups. Also a general slight decline was found in the TPAHs levels from near the surface layers (5-10 cm) to the most recent top layers (0-5 cm) of the cores, attributable to the recent effort by the Nigerian government in clamping down the illegal activity of the economic saboteurs. Therefore, the recent amnesty period granted to the militant groups should be extended. Although mechanism of perylene formation still remains enigmatic, examination of its distributions down cores indicates natural biogenic, pyrogenic and petrogenic origins for the compound at different zones. Thus, the characteristic features of the Imo River environment provide a means of tracing diverse origins for perylene.

Keywords: perylene, historical trend, distribution, origin, Imo River

Procedia PDF Downloads 253
476 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
475 Monitoring Land Cover/Land Use Change in Rupandehi District by Optimising Remotely Sensed Image

Authors: Hritik Bhattarai

Abstract:

Land use and land cover play a crucial role in preserving and managing Earth's natural resources. Various factors, such as economic, demographic, social, cultural, technological, and environmental processes, contribute to changes in land use and land cover (LULC). Rupandehi District is significantly influenced by a combination of driving forces, including its geographical location, rapid population growth, economic opportunities, globalization, tourism activities, and political events. Urbanization and urban growth in the region have been occurring in an unplanned manner, with internal migration and natural population growth being the primary contributors. Internal migration, particularly from neighboring districts in the higher and lower Himalayan regions, has been high, leading to increased population growth and density. This study utilizes geospatial technology, specifically geographic information system (GIS), to analyze and illustrate the land cover and land use changes in the Rupandehi district for the years 2009 and 2019, using freely available Landsat images. The identified land cover categories include built-up area, cropland, Das-Gaja, forest, grassland, other woodland, riverbed, and water. The statistical analysis of the data over the 10-year period (2009-2019) reveals significant percentage changes in LULC. Notably, Das-Gaja shows a minimal change of 99.9%, while water and forest exhibit increases of 34.5% and 98.6%, respectively. Riverbed and built-up areas experience changes of 95.3% and 39.6%, respectively. Cropland and grassland, however, show concerning decreases of 102.6% and 140.0%, respectively. Other woodland also indicates a change of 50.6%. The most noteworthy trends are the substantial increase in water areas and built-up areas, leading to the degradation of agricultural and open spaces. This emphasizes the urgent need for effective urban planning activities to ensure the development of a sustainable city. While Das-Gaja seems unaffected, the decreasing trends in cropland and grassland, accompanied by the increasing built-up areas, are unsatisfactory. It is imperative for relevant authorities to be aware of these trends and implement proactive measures for sustainable urban development.

Keywords: land use and land cover, geospatial, urbanization, geographic information system, sustainable urban development

Procedia PDF Downloads 63
474 Anti-Inflammatory and Analgesic Effects of Methanol Extract of Rhizophora racemosa Leaf in Albino Rats

Authors: Angalabiri-Owei E. Bekekeme, Brambaifa Nelson

Abstract:

In view of the peculiar environment of the Niger Delta, access to modern health care is limited, hence the inhabitants especially those in the swampy areas resorts to sourcing for alternatives cure for their ailments using plants commonly found in this area without scientific evaluation. Rhizophora racemosa, G. F. Meyer (Rhizophoraceae) is the most abundant mangrove plant in the Niger Delta Area of Nigeria. The plant has been observed to be used for relief of a toothache and dysmenorrhoea among some Ijaw communities in the region. This work has revealed the likely potential of the plant in drug discovery and development. The crude methanol extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) were tested for analgesic effect using fresh egg albumin induced inflammatory pain and Randall–Sellito method to assess the pain threshold. The anti-inflammatory effect was also evaluated with the extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) using acute inflammatory model; fresh egg albumin induced paw oedema and assessed using Plethysmometer in rats. The methanol extracts 300 mg/kg and 600 mg/kg exhibited a significant (P < 0.001) and dose-dependent analgesic activity compared with the negative control and a standard drug diclofenac using ANOVA with Least Significant Difference post hoc test as evidenced by increased pain threshold. Also, the extract significantly (P < 0.001) reduced the rat paw oedema induced by the sub plantar injection of fresh egg albumin when compared with the negative control and a standard diclofenac using above statistical methods. This study revealed that the plant possesses analgesic and anti-inflammatory activities hence provide scientific bases for use as medicine.

Keywords: analgesic, anti-inflammatory, plethysmometer, Rhizophora racemosa

Procedia PDF Downloads 363
473 The Influence of the Soil in the Vegetation of the Luki Biosphere Reserve in the Democratic Republic of Congo

Authors: Sarah Okende

Abstract:

It is universally recognized that the forests of the Congo Basin remain a common good and a complex ecosystem, and insufficiently known. Historically and throughout the world, forests have been valued for the multiple products and benefits they provide. In addition to their major role in the conservation of global biodiversity and in the fight against climate change, these forests also have an essential role in the regional and global ecology. This is particularly the case of the Luki Biosphere Reserve, a highly diversified evergreen Guinean-Congolese rainforest. Despite the efforts of sustainable management of the said reserve, the understanding of the place occupied by the soil under the influence of the latter does not seem to be an interesting subject for the general public or even scientists. The Luki biosphere reserve is located in the west of the DRC, more precisely in the south-east of Mayombe Congolais, in the province of Bas-Congo. The vegetation of the Luki Biosphere Reserve is very heterogeneous and diversified. It ranges from grassy formations to semi-evergreen dense humid forests, passing through edaphic formations on hydromorphic soils (aquatic and semi-aquatic vegetation; messicole and segetal vegetation; gascaricole vegetation; young secondary forests with Musanga cercropioides, Xylopia aethiopica, Corynanthe paniculata; mature secondary forests with Terminalia superba and Hymenostegia floribunda; primary forest with Prioria balsamifera; climax forests with Gilbertiodendron dewevrei, and Gilletiodendron kisantuense). Field observations and reading of previous and up-to-date work carried out in the Luki biosphere reserve are the methodological approaches for this study, the aim of which is to show the impact of soil types in determining the varieties of vegetation. The results obtained prove that the four different types of soil present (purplish red soils, developing on amphibolites; red soils, developed on gneisses; yellow soils occurring on gneisses and quartzites; and alluvial soils, developed on recent alluvium) have a major influence apart from other environmental factors on the determination of different facies of the vegetation of the Luki Biosphere Reserve. In conclusion, the Luki Biosphere Reserve is characterized by a wide variety of biotopes determined by the nature of the soil, the relief, the microclimates, the action of man, or the hydrography. Overall management (soil, biodiversity) in the Luki Biosphere Reserve is important for maintaining the ecological balance.

Keywords: soil, biodiversity, forest, Luki, rainforest

Procedia PDF Downloads 86
472 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia

Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly

Abstract:

Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.

Keywords: fire, ecology, biodiversity, landscape ecology

Procedia PDF Downloads 77
471 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 123
470 Colonization Pattern and Growth of Reintroduced Tiger (Panthera tigris) Population at Central India

Authors: M. S. Sarkar, J. A. Johnson, S. Sen, G. K. Saha, K. Ramesh

Abstract:

There is growing recognition of several important roles played by tigers for maintaining sustainable biodiversity at diverse ecosystems in South and South-East Asia. Only <3200 individuals are left in the wild because of poaching and habitat loss. Thus, restoring wild population is an emerging as well as important conservation initiative, but such efforts still remain challenging due to their elusive and solitary behavior. After careful translocation of few individuals, how reintroduced individuals colonize into suitable habitat and achieve stable stage population through reproduction is vital information for forest managers and policy makers of its 13 distribution range countries. Four wild and two captive radio collared tigers were reintroduced at Panna Tiger Reserve, Madhya-pradesh, India during 2009-2014. We critically examined their settlement behavior and population growth over the period. Results from long term telemetry data showed that male explored larger areas rapidly in short time span, while females explored small area in long time period and with significant high rate of movement in both sexes during exploratory period. Significant difference in home range sizes of tigers were observed in exploratory and settlement period. Though all reintroduced tigers preferred densely vegetated undisturbed forest patches within the core area of tiger reserve, a niche based k select analysis showed that individual variation in habitat selection was prominent among reintroduced tigers. Total 18 litter of >42 known cubs were born with low mortality rate, high maternity rate, high observed growth rate and short generation time in both the sexes. The population achieved its carrying capacity in a very short time span, marking success of this current tiger conservation programme. Our study information could provide significant insights on the tiger biology of translocated tigers with implication for future conservation strategies that consider translocation based recovery in their range countries.

Keywords: reintroduction, tiger, home range, demography

Procedia PDF Downloads 219
469 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 148
468 Spatial Interactions Between Earthworm Abundance and Tree Growth Characteristics in Western Niger Delta

Authors: Olatunde Sunday Eludoyin, Charles Obiechina Olisa

Abstract:

The study examined the spatial interactions between earthworm abundance (EA) and tree growth characteristics in ecological belts of Western Niger Delta, Nigeria. Eight 20m x 20m quadrat were delimited in the natural vegetation in each of the rainforest (RF), mangrove (M), fresh water swamp (FWS), and guinea savanna (GS) ecological belts to gather data about the tree species (TS) characteristics which included individual number of tree species (IN), diversity (Di), density (De) and richness (Ri). Three quadrats of 1m x 1m were delineated in each of the 20m x 20m quadrats to collect earthworm species the topsoil (0-15cm), and subsoil (15-30cm) and were taken to laboratory for further analysis. Descriptive statistics and inferential statistics were used for data analysis. Findings showed that a total of 19 earthworm species was found, with 58.5% individual species recorded in the topsoil and 41.5% recorded in the subsoil. The total population ofEudriliuseugeniae was predominantly highest in both topsoil (38.4%) and subsoil (27.1%). The total population of individual species of earthworm was least in GS in the topsoil (11.9%) and subsoil (8.4%). A total of 40 different species of TS was recorded, of which 55.5% were recorded in FWS, while RF was significantly highest in the species diversity(0.5971). Regression analysis revealed that Ri, IN, DBH, Di, and De of trees explained 65.9% of the variability of EA in the topsoil, while 46.9 % of the variability of earthworm abundance was explained by the floristic parameters in the subsoil.Similarly, correlation statistics revealed that in the topsoil, EA is positively and significantly correlated with Ri (r=0.35; p<0.05), IN (r=0.523; p<0.05) and De (r=0.469; p<0.05) while DBH was negatively and significantly correlated with earthworm abundance (r=-0.437; p<0.05). In the subsoil, only Ri and DBH correlated significantly with EA. The study concluded that EA in the study locations was highly influenced by tree growth species especially Ri, IN, DBH, Di, and De. The study recommended that the TSabundance should be improved in the study locations to ensure the survival of earthworms for ecosystem functions.

Keywords: interactions, earthworm abundance, tree growth, ecological zones, western niger delta

Procedia PDF Downloads 104
467 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kelum N. Manamendra-Arachchi, Kalangi Rodrigo

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods of time. Sri Lanka has been known as an Island, which has a diverse variation of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated ' on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearned from wet zone prehistoric caves, it has been argued that periods of momentous climate changes during the LGM and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous Genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 oC over the last 50,000 years. Site Catchment or Territorial analysis cannot be no longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequences of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expanded to energy produced.

Keywords: palaeo-environment, prehistory, palaeo-ecology, zooarchaeology

Procedia PDF Downloads 126
466 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 396
465 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 45
464 Biomass For Energy In Improving Sustainable Economic Development

Authors: Dahiru Muhammad, Muhammad Danladi, Muhammad Yahaya, Adamu Garba

Abstract:

This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains, in brief, the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development.

Keywords: biomass, energy, sustainability, economic

Procedia PDF Downloads 138
463 Biomass Energy in Improving Sustainable Economic Development

Authors: Dahiru Muhammad, Muhammad Danladi, Adamu Garba, Muhammad Yahaya

Abstract:

This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development.

Keywords: biomass, energy, sustainable, economic, development

Procedia PDF Downloads 132
462 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 88
461 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo

Abstract:

Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.

Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate

Procedia PDF Downloads 144
460 Integrated Watershed Management Practice in Chelchai Hyrcanian Forests in the North of Iran

Authors: Mashad Maramaei, Behrooz Chogan, Reza Ahmadi

Abstract:

Human health and the health of his watershed are inseparable. This is because a watershed is an interconnected system of "land", "water", "air" and "life". Nowadays, most of the world's watersheds show symptoms of unhealthiness and require a prompt solution. It is believed that suitable solution is a participatory and Integrated Watershed Management (IWM). In recent decades the Hyrcanian forests in the north of Iran, which belongs to the end of the third geological era, are suffering from many environmental challenges such as land degradation, increasing trends of flood, drought and accelerated soil erosion. These challenges in the main forested area of the country impose many tangible and intangible damages and human losses. This is despite the fact that in the past decades, forestry programs, watershed management and other activities in the region have been implemented in a parallel and uncoordinated manner. Therefore, recently; the Natural Resources and Watershed Management Organization has resorted to the concept of IWM planning the Hyrcanian watersheds. The Chelchai watershed as mostly degraded watershed in the eastern part of the Hyrcanian forests has been selected as a pilot watershed for implementation of the IWM. It has a drainage area of 25680 hectares and receives an average annual precipitation of 650 mm. In this mountainous region, the average temperature is 17.3 degrees Celsius. About 34% of the watershed is under cultivation, 64% under forest cover, 2% under built up areas and etc. In this research, the effectiveness or ineffectiveness of the IWM model implementation of the Natural Resources and Watershed Management Organization has been evaluated based on questionnaire method and field studies. The results indicated that IWM activities in the study area should be reconsidered and revived. Based on this research and the lessons learned during five years' experience in the Chelchai watershed; authors believe that seven important tasks are necessary for socially acceptable and successful implementation of IWM projects. These are: 1) Establishment of Local Coordination Committee (LCC) at the watershed level 2) working for development of a IWM law among government organizations to organize watershed management and eliminate parallel and contradictory activities 3) More investment on education of local communities, especially women and children 4) Development of trust builder and pattern projects that showing best agricultural and livestock management activities at each of 26 villages 5) Assigning forest protection to local communities. 6) Capacity building of government stakeholders. 7) Helping in the marketing of watershed products.

Keywords: integrated watershed management, Chelchai, Hyrcanian forests, Iran

Procedia PDF Downloads 27
459 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica

Authors: Elena Listo, Miguel Marchamalo

Abstract:

This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.

Keywords: alfisols, Costa Rica, infiltration, remote sensing

Procedia PDF Downloads 699
458 Case study of Environmental Impact Assessment of Quarrying Activities

Authors: Hocine Benabid, M. F. Ghorab

Abstract:

The exploration of open pit mines and quarries has always been important resources that provide many valuable needed minerals but very often accompanied by large amounts of dust rejected into the air and also many other negative environmental impacts. The dust remains suspended in the atmosphere before being deposited on soils, on forest trees, on plants and also on water, causing at long term allergic and respiratory diseases for residents living in the vicinity or even far away from the mines and quarries. As a consequence of this activity, dust can also disturb the photosynthetic activity of plants and affect water quality. It is for these reasons and because of the intensification of these activities that our motivations have become larger to deal with this kind of topic, which is becoming nowadays an environmental and health concern for almost every country in the world.

Keywords: mines, dust, environmental impacts, environmental concern

Procedia PDF Downloads 386
457 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities

Authors: Carly Cummings, Maria Soledad Peresin

Abstract:

Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.

Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education

Procedia PDF Downloads 71
456 Destruction of Coastal Wetlands in Harper City-Liberia: Setting Nature against the Future Society

Authors: Richard Adu Antwako

Abstract:

Coastal wetland destruction and its consequences have recently taken the center stage of global discussions. This phenomenon is no gray area to humanity as coastal wetland-human interaction seems inevitably ingrained in the earliest civilizations, amidst the demanding use of its resources to meet their necessities. The severity of coastal wetland destruction parallels with growing civilizations, and it is against this backdrop that, this paper interrogated the causes of coastal wetland destruction in Harper City in Liberia, compared the degree of coastal wetland stressors to the non-equilibrium thermodynamic scale as well as suggested an integrated coastal zone management to address the problems. Literature complemented the primary data gleaned via global positioning system devices, field observation, questionnaire, and interviews. Multi-sampling techniques were used to generate data from the sand miners, institutional heads, fisherfolk, community-based groups, and other stakeholders. Non-equilibrium thermodynamic theory remains vibrant in discerning the ecological stability, and it would be employed to further understand the coastal wetland destruction in Harper City, Liberia and to measure the coastal wetland stresses-amplitude and elasticity. The non-equilibrium thermodynamics postulates that the coastal wetlands are capable of assimilating resources (inputs), as well as discharging products (outputs). However, the input-output relationship exceedingly stretches beyond the thresholds of the coastal wetlands, leading to coastal wetland disequilibrium. Findings revealed that the sand mining, mangrove removal, and crude dumping have transformed the coastal wetlands, resulting in water pollution, flooding, habitat loss and disfigured beaches in Harper City in Liberia. This paper demonstrates that the coastal wetlands are converted into developmental projects and agricultural fields, thus, endangering the future society against nature.

Keywords: amplitude, crude dumping, elasticity, non-equilibrium thermodynamics, wetland destruction

Procedia PDF Downloads 146
455 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 106
454 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia

Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan

Abstract:

Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.

Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity

Procedia PDF Downloads 302
453 Land Use Influence on the 2014 Catastrophic Flood in the Northeast of Peninsular Malaysia

Authors: Zulkifli Yusop

Abstract:

The severity of December 2014 flood on the east coast of Peninsular Malaysia has raised concern over the adequacy of existing land use practices and policies. This article assesses flood responses to selective logging, plantation establishment (oil palm and rubber) and their subsequent management regimes. The hydrological impacts were evaluated on two levels: on-site (mostly in the upstream) and off-site to reflect the cumulative impact at downstream. Results of experimental catchment studies suggest that on-site impact of flood could be kept to a minimum when selecting logging strictly adhere to the existing guidelines. However, increases in flood potential and sedimentation rate were observed with logging intensity and slope steepness. Forest conversion to plantation show the highest impacts. Except on the heavily compacted surfaces, the ground revegetation is usually rapid within two years upon the cessation of the logging operation. The hydrological impacts of plantation opening and replanting could be significantly reduced once the cover crop has fully established which normally takes between three to six months after sowing. However, as oil palms become taller and the canopy gets closer, the cover crop tends to die off due to light competition, and its protecting function gradually diminishes. The exposed soil is further compacted by harvesting machinery which subsequently leads to greater overland flow and erosion rates. As such, the hydrological properties of matured oil palm plantations are generally poorer than in young plantation. In hilly area, the undergrowth in rubber plantation is usually denser compared to under oil palm. The soil under rubber trees is also less compacted as latex collection is done manually. By considering the cumulative effects of land-use over space and time, selective logging seems to pose the least impact on flood potential, followed by planting rubber for latex, oil palm and Latex Timber Clone (LTC). The cumulative hydrological impact of LTC plantation is the most severe because of its shortest replanting rotation (12 to 15 years) compared to oil palm (25 years) and rubber for latex (35 years). Furthermore, the areas gazetted for LTC are mostly located on steeper slopes which are more susceptible to landslide and erosion. Forest has limited capability to store excess rainfall and is only effective in attenuating regular floods. Once the hydrologic storage is exceeded, the excess rainfall will appear as flood water. Therefore, for big floods, rainfall regime has a much bigger influence than land use.

Keywords: selective logging, plantation, extreme rainfall, debris flow

Procedia PDF Downloads 351
452 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 23
451 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: greenhouse radiative force, greenhouse air temperature, greenhouse thermodynamics, greenhouse historical, greenhouse radiative force on ice, greenhouse radiative force on plants, greenhouse radiative force in air

Procedia PDF Downloads 107
450 Spawning Induction and Early Larval Development of the Penshell Atrina maura (Sowerby, 1835) under Controlled Conditions in Ecuador

Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes

Abstract:

Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the penshell Atrina maura under controlled conditions. Bioassays were carried out with one adult batch (n= 26) with an average valvar length of 307,6 ± 9,4 mm, which were collected in the Puerto El Morro Mangrove (2° 42' 33'' S, 80° 14' 28'' W), Guayas Province. During a short acclimation stage, five adults of penshell A. maura were sacrificed in order to determine their sexual maturity degree and to estimate their sex ratio. Dissection showed that three were ripe females (60%) and two were ripe males (40%). Later, three groups (n= 7 by each) were tested with two treatments in order to induce the broodstock spawning: thermal stress, osmotic shock, and one control. Spawning induction was achieved by the immersion in water to 0 g L⁻¹ per 1 h and immersion in sea water to 34 g L⁻¹ per 1 h. After the delivery of gametes, it was achieved 1,35 × 10⁶ viable zygotes. As results, fertilized eggs had 60 µm diameter; while first and second cell divisions were observed to 1 h post-fertilization, with individual average length of 65 ± 4 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 71 ± 4 µm; and trochophore stage at 16 h post-fertilization with individual average length of 75 ± 5 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 81 ± 5 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 145 ± 6 µm. These pioneering results in Ecuador can strengthen the local conservation process of the overexploited A. maura and to encourage its production for commercial purposes.

Keywords: Atrina maura, Ecuador, larval development, spawning induction

Procedia PDF Downloads 165
449 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 78