Search results for: biological efficiency
3101 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4253100 Quantitative Assessment of Soft Tissues by Statistical Analysis of Ultrasound Backscattered Signals
Authors: Da-Ming Huang, Ya-Ting Tsai, Shyh-Hau Wang
Abstract:
Ultrasound signals backscattered from the soft tissues are mainly depending on the size, density, distribution, and other elastic properties of scatterers in the interrogated sample volume. The quantitative analysis of ultrasonic backscattering is frequently implemented using the statistical approach due to that of backscattering signals tends to be with the nature of the random variable. Thus, the statistical analysis, such as Nakagami statistics, has been applied to characterize the density and distribution of scatterers of a sample. Yet, the accuracy of statistical analysis could be readily affected by the receiving signals associated with the nature of incident ultrasound wave and acoustical properties of samples. Thus, in the present study, efforts were made to explore such effects as the ultrasound operational modes and attenuation of biological tissue on the estimation of corresponding Nakagami statistical parameter (m parameter). In vitro measurements were performed from healthy and pathological fibrosis porcine livers using different single-element ultrasound transducers and duty cycles of incident tone burst ranging respectively from 3.5 to 7.5 MHz and 10 to 50%. Results demonstrated that the estimated m parameter tends to be sensitively affected by the use of ultrasound operational modes as well as the tissue attenuation. The healthy and pathological tissues may be characterized quantitatively by m parameter under fixed measurement conditions and proper calibration.Keywords: ultrasound backscattering, statistical analysis, operational mode, attenuation
Procedia PDF Downloads 3233099 Production of Buttermilk as a Bio-Active Functional Food by Utilizing Dairy Waste
Authors: Hafsa Tahir, Sanaullah Iqbal
Abstract:
Glactooligosaccharide (GOS) is a type of prebiotic which is mainly found in human milk. GOS belongs to those bacteria which stimulates the growth of beneficial bacteria in human intestines. The aim of the present study was to develop a value-added product by producing prebiotic (GOS) in buttermilk through trans galactosylation. Buttermilk is considered as an industrial waste which is discarded after the production of butter and cream. It contains protein, minerals, vitamins and a smaller amount of fat. Raw milk was pasteurized at 100º C for butter production and then trans galactosylation process was induced in the butter milk thus obtained to produce prebiotic GOS. Results showed that the enzyme (which was obtained from bacterial strain of Esecrshia coli and has a gene of Lactobacillus reuteri L103) concentration between 400-600µl/5ml can produce GOS in 30 minutes. Chemical analysis and sensory evaluation of plain and GOS containing buttermilk showed no remarkable difference in their composition. Furthermore, the shelf-life study showed that there was non-significant (P>0.05) difference in glass and pouch packaging of buttermilk. Buttermilk in pouch packaging maintained its stability for 6 days without the addition of preservatives. Therefore it is recommended that GOS enriched buttermilk which is generally considered as a processing waste in dairy manufacturing can be turned into a cost-effective nutritional functional food product. This will not only enhance the production efficiency of butter processing but also will create a new market opportunity for dairy manufacturers all over the world.Keywords: buttermilk, galactooligosaccharide, shelf Life, transgalactosylation
Procedia PDF Downloads 2923098 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 3643097 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 263096 Using Building Information Modeling in Green Building Design and Performance Optimization
Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad
Abstract:
Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design
Procedia PDF Downloads 3433095 Prevalence of Cognitive Decline in Major Depressive Illness
Authors: U. B. Zubair, A. Kiyani
Abstract:
Introduction: Depressive illness predispose individuals to a lot of physical and mental health issues. Anxiety and substance use disorders have been studied widely as comorbidity. Biological symptoms also now considered part of the depressive spectrum. Cognitive abilities also decline or get affected and need to be looked into in detail in depressed patients. Objective: To determine the prevalence of cognitive decline among patients with major depressive illness and analyze the associated socio-demographic factors. Methods: 190 patients of major depressive illness were included in our study to determine the presence of cognitive decline among them. Depression was diagnosed by a consultant psychiatrist by using the ICD-10 criteria for major depressive disorder. British Columbia Cognitive Complaints Inventory (BC-CCI) was the psychometric tool used to determine the cognitive decline. Sociodemographic profile was recorded and the relationship of various factors with cognitive decline was also ascertained. Findings: 70% of the patients suffering from depression included in this study showed the presence of some degree of cognitive decline, while 30% did not show any evidence of cognitive decline when screened through BCCCI. Statistical testing revealed that the female gender was the only socio-demographic parameter linked significantly with the presence of cognitive decline. Conclusion: Decline in cognitive abilities was found in a significant number of patients suffering from major depression in our sample population. Screening for this parameter f mental function should be done in depression clinics to pick it early.Keywords: depression, cognitive decline, prevalence, socio-demographic factors
Procedia PDF Downloads 1443094 A Study of Carbon Emissions during Building Construction
Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli
Abstract:
In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.Keywords: building construction phase, carbon emissions assessment, building life cycle
Procedia PDF Downloads 7513093 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst
Procedia PDF Downloads 1173092 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario
Authors: Pooja Verma, Sumana Ghosh
Abstract:
There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber
Procedia PDF Downloads 3523091 Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand
Authors: Jasaswini Mishra, Ashim K. Dey
Abstract:
This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study.Keywords: group action, laterally loaded piles, p-multiplier, strain gauge
Procedia PDF Downloads 2423090 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project
Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende
Abstract:
Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport
Procedia PDF Downloads 213089 Effects of in silico (Virtual Lab) And in vitro (inside the Classroom) Labs in the Academic Performance of Senior High School Students in General Biology
Authors: Mark Archei O. Javier
Abstract:
The Fourth Industrial Revolution (FIR) is a major industrial era characterized by the fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. Since this era teaches us how to thrive in the fast-paced developing world, it is important to be able to adapt. With this, there is a need to make learning and teaching in the bioscience laboratory more challenging and engaging. The goal of the research is to find out if using in silico and in vitro laboratory activities compared to the conventional conduct laboratory activities would have positive impacts on the academic performance of the learners. The potential contribution of the research is that it would improve the teachers’ methods in delivering the content to the students when it comes to topics that need laboratory activities. This study will develop a method by which teachers can provide learning materials to the students. A one-tailed t-Test for independent samples was used to determine the significant difference in the pre- and post-test scores of students. The tests of hypotheses were done at a 0.05 level of significance. Based on the results of the study, the gain scores of the experimental group are greater than the gain scores of the control group. This implies that using in silico and in vitro labs for the experimental group is more effective than the conventional method of doing laboratory activities.Keywords: academic performance, general biology, in silico laboratory, in vivo laboratory, virtual laboratory
Procedia PDF Downloads 1893088 Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome
Authors: Bhavini Patel, Aslihan Ugun-Klusek, Ellen Billet
Abstract:
The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival.Keywords: monoamine oxidase, neurodegeneration, Parkinson's disease, proteasome
Procedia PDF Downloads 1353087 Combined Effects of Microplastics and Climate Change on Marine Life
Authors: Vikrant Sinha, Himanshu Singh, Nitish Kumar Singh, Sujal Nag
Abstract:
This research creates an urgent and complex challenge for marine ecosystems. Microplastics were primarily found on land, but now they are pervasive in marine environments as well, affecting a wide range of marine species, from zooplankton to larger mammals that live in those environments. These pollutants interfere with major biological processes like feeding and reproduction, causing disruption throughout the food web as microplastics are getting accumulated at different tropic levels. Meanwhile, climatic changes made these effects more accelerated, and the concentration of microplastics due to these occurrences is increasing day by day. Rising temperatures, melting ice, increased runoff due to rainfall, and shifting wind patterns are transforming marine life in a way that intensifies the burden on marine life. This dual stress is particularly present in fragile ecosystems of marine life, such as coral reefs and mangroves. Addressing this twisted crisis requires not only efforts to restrain plastic pollution but also adapts strategies for climate mitigation. This research emphasizes the critical need to combine approaches to save marine biodiversity and withstand the rapid changes in the environment.Keywords: microplastic pollution, climate change impacts, marine ecosystems, biodiversity threats, zooplankton ingestion, trophic accumulation, coral reef degradation, ecosystem resilience, plastic pollution mitigation, climate adaptation strategies, SST, sea surface temperature
Procedia PDF Downloads 103086 Synthesis of New Analogs of IPS-339, and Study of Their Cardiovascular in Dogs
Authors: Elham Zarenezhad, Ali Zarenezhad, Mehdi Mardkhoshnood
Abstract:
We described the synthesis and biological study of O-oxime ethers having a-amino acid residues as new analogs of IPS-339. In this synthesis, the reaction of fluorene O-oxime with epichlorohydrin or epibromohydrin afforded the corresponding O-oxime ether adducts. The N-alkylation of valine amino acid with O-oxime ether adducts led to the synthesis of new analogs of IPS-339. The cardiovascular properties of the compound have been studied. In this regard, six clinically healthy same sex mongrel dogs were examined. The dogs were randomly divided into 3 groups of two members. 1 groups received 2 mg kg-1 body weight of compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) intravenously, whereas group 2 and 3 received only DMSO–water (distil.) and propranolol (Inderal) (2 mg kg-1), respectively. The electrocardiograph (ECG) was recorded with lead II. The recording was run successively by 5 min time interval on each dog before, simultaneously, and after compound infusion. Data after administration were taken from normal sinus beats that were closely related to the arrhythmias whenever they occurred. In general, no detectable arrhythmia was observed in all ECG records regardless of increasing the heart rate that likely caused by stress origin from invasive procedure just after infusion. Compound diminished the heart rate during study especially at 20th minute compared to propranolol as a reference drug. Compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) was the most effective compound with remarkable ability in declining of the heart rate.Keywords: electrocardiograph (ECG), cardiovascular, IPS-339, dogs
Procedia PDF Downloads 3463085 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations
Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang
Abstract:
The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation
Procedia PDF Downloads 2783084 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy
Authors: Dhara Adhnandya Kumara, Novrizal Novrizal
Abstract:
Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock
Procedia PDF Downloads 2173083 Detection of Brackish Water Biological Fingerprints in Potable Water
Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh
Abstract:
The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance
Procedia PDF Downloads 1223082 Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity
Authors: Jae Young Jang, Jong Hoon Ahn, Jae-Woong Lim, So Young Kang, Mi Kyeong Lee
Abstract:
Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases.Keywords: different parts, phenolic compounds, Rhus verniciflua, urushiols
Procedia PDF Downloads 3193081 Characterising the Performance Benefits of a 1/7-Scale Morphing Rotor Blade
Authors: Mars Burke, Alvin Gatto
Abstract:
Rotary-wing aircraft serve as indispensable components in the advancement of aviation, valued for their ability to operate in diverse and challenging environments without the need for conventional runways. This versatility makes them ideal for applications like environmental conservation, precision agriculture, emergency medical support, and rapid-response operations in rugged terrains. However, although highly maneuverable, rotary-wing platforms generally have lower aerodynamic efficiency than fixed-wing aircraft. This study takes the view of improving aerodynamic performance by examining a 1/7th scale rotor blade model with a NACA0012 airfoil using CROTOR software. The analysis focuses on optimal spanwise locations for separating morphing and fixed blade sections at 85%, 90%, and 95% of the blade radius (r/R) with up to +20 degrees of twist incorporated to the design.. Key performance metrics assessed include lift coefficient (CL), drag coefficient (CD), lift-to-drag ratio (CL / CD), Mach number, power, thrust coefficient, and Figure of Merit (FOM). Results indicate that the 0.90 r/R position is optimal for dividing the morphing and fixed sections, achieving a significant improvement of over 7% in both lift-to-drag ratio and FOM. These findings underscoring the substantial impact on overall performance of the rotor system and rotational aerodynamics that geometric modifications through the inclusion of a morphing capability can ultimately realise.Keywords: rotary morphing, rotational aerodynamics, rotorcraft morphing, rotor blade, twist morphing
Procedia PDF Downloads 123080 Performance Evaluation of a Spouted Bed Bioreactor (SBBR) for the Biodegradation of 2, 4 Dichlorophenol
Authors: Taghreed Al-Khalid, Muftah El-Naas
Abstract:
As an economical and environmentally friendly technology, biological treatment has been shown to be one of the most promising approaches for the removal of numerous types of organic water pollutants such as Chlorophenols, which are hazardous pollutants commonly encountered in wastewater generated by the petroleum and petrochemical industries. This study aimed at evaluating the performance of a spouted bed bioreactor (SBBR) for aerobic biodegradation of 2, 4 dichlorophenol (DCP) by a commercial strain of Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel particles. The SBBR is characterized by systematic intense mixing, resulting in improvement of the biodegradation rates through reducing the mass transfer limitations. The reactor was evaluated in both batch and continuous mode in order to evaluate its hydrodynamics in terms of stability and response to shock loads. The SBBR was able to maintain a stable operation and recovered quickly to its normal operating mode once the shock load had been removed. In comparison to a packed bed reactor bioreactor, the SBBR proved to be more efficient and more stable, achieving a removal percentage and throughput of 80% and 1414 g/m3day, respectively. In addition, the biodegradation of chlorophenols was mathematically modeled using a dynamic modeling approach in order to assess reaction and mass transfer limitations. The results confirmed the effectiveness of the use of the PVA immobilization technique for the biodegradation of phenols.Keywords: biodegradation, 2, 4 dichlorophenol, immobilization, polyvinyl alcohol (PVA) gel
Procedia PDF Downloads 1813079 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits
Procedia PDF Downloads 4213078 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 4123077 Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles
Authors: Uc-Cayetano E. G., Ake-Uh O. E., Villanueva-Mena I. E., Ordonez L. C.
Abstract:
Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs.Keywords: WCNTs, enzymes, oxidation, decoration
Procedia PDF Downloads 1293076 Performance Gap and near Zero Energy Buildings Compliance of Monitored Passivhaus in Northern Ireland, the Republic of Ireland and Italy
Authors: S. Colclough, V. Costanzo, K. Fabbri, S. Piraccini, P. Griffiths
Abstract:
The near Zero Energy Building (nZEB) standard is required for all buildings from 2020. The Passive House (PH) standard is a well-established low-energy building standard, having been designed over 25 years ago, and could potentially be used to achieve the nZEB standard in combination with renewables. By comparing measured performance with design predictions, this paper considers if there is a performance gap for a number of monitored properties and assesses if the nZEB standard can be achieved by following the well-established PH scheme. Analysis is carried out based on monitoring results from real buildings located in Northern Ireland, the Republic of Ireland and Italy respectively, with particular focus on the indoor air quality including the assumed and measured indoor temperature and heating periods for both standards as recorded during a full annual cycle. An analysis is carried out also on the energy performance certificates of each of the dwellings to determine if they meet the near Zero Energy Buildings primary energy consumption targets set in the respective jurisdictions. Each of the dwellings is certified as complying with the passive house standard, and accordingly have very good insulation levels, heat recovery and ventilation systems of greater than 75% efficiency and an airtightness of less than 0.6 air changes per hour at 50 Pa. It is found that indoor temperature and relative humidity were within the comfort boundaries set in the design stage, while carbon dioxide concentrations are sometimes higher than the values suggested by EN 15251 Standard for comfort class I especially in bedrooms.Keywords: monitoring campaign, nZEB (near zero energy buildings), Passivhaus, performance gap
Procedia PDF Downloads 1523075 Chemical Constituents of Matthiola Longipetala Extracts: In Vivo Antioxidant and Antidiabetic Effects in Alloxan Induced Diabetes Rats
Authors: Mona Marzouk, Nesrine Hegazi, Aliaa Ragheb, Mona El Shabrawy, Salwa Kawashty
Abstract:
The whole plant of Matthiola longipetala (Brassicaceae) was extracted by 70% methanol to give the total aqueous methanol extract (AME), which was defatted by hexane yielded hexane extract (HE) and defatted AME (DAME). HE was analyzed through GC/MS assay and revealed the detection of 28 non-polar compounds. In addition, the chemical investigation of DAME led to the isolation and purification of twelve flavonoids and three chlorogenic acids. Their structures were interpreted through chemical (complete and partial acid hydrolysis) and spectroscopic analysis (MS, UV, 1D and 2D NMR). Among them, nine compounds have been isolated for the first time from M. longipetala. Moreover, LC-ESI-MS analysis of DAME was achieved to detect additional 46 metabolites, including phospholipids, organic acids, phenolic acids and flavonoids. The biological activity of AME, HE and DAME against alloxan inducing oxidative stress and diabetes in male rats was investigated. Diabetes was induced using a single dose of Alloxan (150 mg/kg b.wt.). HE and DAME significantly increased serum GSH content in rats (37.3±0.7 and 35.9±0.6 mmol/l) compared to diabetic rats (21.8±0.3) and vitamin E (36.2±1.1) at P<0.01. Also, HE, DAME and AME revealed a significant acute anti-hyperglycemic effect potentiated after four weeks of treatment with blood glucose levels of 96.2±5.4, 98.7±6.1 and 98.9±8.6 mg/dl, respectively, compared to diabetic rats (263.4±7.8) and metaformin group (81.9±2.4) at P<0.01.Keywords: Brassicaceae, Flavonoid, LCMS/MS, Matthiola
Procedia PDF Downloads 1833074 Retrospective Reconstruction of Time Series Data for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.Keywords: content analysis, factors, integrated waste management system, time series
Procedia PDF Downloads 3263073 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 1623072 Synthesis and Biological Evaluation of Pyridine Derivatives as Antimicrobial Agents
Authors: Dagim Ali Hussen, Adnan A. Bekhit, Ariaya Hymete
Abstract:
In this study, several pyridine derivatives were synthesized and evaluated for their in vitro antimicrobial activity against gram-positive bacteria (S. aureus and B. Cereus), gram-negative bacteria (P. aeruginosa and E. coli) and fungus (C. albican and A niger). The intermediate chalcone derivative 2a,b was synthesized by condensation of pyrazole aldehydes 1a,b with acetophenone in alcoholic KOH. Cyclization of 2a,b with ethyl cyanoacetate ad ammonium acetate resulted in pyridine carbonitrile derivatives 3a,b. Furthermore, condensation of pyridine-4-carboxaldeyhe with different amino-derivatives gave rise to pyridine derivatives 5a,b, 6a,b. The oxadiazole derivative 7a was prepared by cyclization of 6a with acetic anhydride. Characterization of the synthesized compound was performed using IR, 1H NMR, 13C NMR spectra and elemental microanalyses. The antimicrobial results revealed that compounds 5a, 6b and 7a exhibited half fold antibacterial activity compared to ampicillin, against B. cereus. On the other hand, compound 3b showed an equivalent activity compared to miconazole against candida albican (CANDAL 03) and to clotrimazole against the clinical isolate candida albican 6647. Moreover, this compound 3b was further tested for its acute toxicity profile. The results showed that oral LD50 is more that 300 mg/kg and parentral LD50 is more than 100 mg/kg. Compound 3b is a good candidate for antifungal agent with good toxicity profile, and deserves more chemical derivatization and clinical study.Keywords: antifungal, antimicrobial, Candida albican, pyridine
Procedia PDF Downloads 498