Search results for: RLS identification algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6328

Search results for: RLS identification algorithm

718 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis

Authors: Srinaath Anbu Durai, Wang Zhaoxia

Abstract:

Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.

Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks

Procedia PDF Downloads 116
717 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs

Authors: Michio Kurosu

Abstract:

Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.

Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects

Procedia PDF Downloads 76
716 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
715 School Refusal Behaviours: The Roles of Adolescent and Parental Factors

Authors: Junwen Chen, Celina Feleppa, Tingyue Sun, Satoko Sasagawa, Michael Smithson

Abstract:

School refusal behaviours refer to behaviours to avoid school attendance, chronic lateness in arriving at school, or regular early dismissal. Poor attendance in schools is highly correlated with anxiety, depression, suicide attempts, delinquency, violence, and substance use and abuse. Poor attendance is also a strong indicator of lower achievement in school, as well as problematic social-emotional development. Long-term consequences of school refusal behaviours include fewer opportunities for higher education, employment, and social difficulties, and high risks of later psychiatric illness. Given its negative impacts on youth educational outcomes and well-being, a thorough understanding of factors that are involved in the development of this phenomenon is warranted for developing effective management approaches. This study investigated parental and adolescent factors that may contribute to school refusal behaviours by specifically focusing on the role of parental and adolescents’ anxiety and depression, emotion dysregulation, and parental rearing style. Findings are expected to inform the identification of both parental and adolescents’ factors that may contribute to school refusal behaviours. This knowledge will enable novel and effective approaches that incorporate these factors to managing school refusal behaviours in adolescents, which in turn improve their school and daily functioning. Results are important for an integrative understanding of school refusal behaviours. Furthermore, findings will also provide information for policymakers to weigh the benefits of interventions targeting school refusal behaviours in adolescents. One-hundred-and-six adolescents aged 12-18 years (mean age = 14.79 years old, SD = 1.78, males = 44) and their parents (mean age = 47.49 years old, SD = 5.61, males = 27) completed an online questionnaire measuring both parental and adolescents’ anxiety, depression, emotion dysregulation, parental rearing styles, and adolescents’ school refusal behaviours. Adolescents with school refusal behaviours reported greater anxiety and depression, with their parents showing greater emotion dysregulation. Parental emotion dysregulation and adolescents’ anxiety and depression predicted school refusal behaviours independently. To date, only limited studies have investigated the interplay between parental and youth factors in relation to youth school refusal behaviours. Although parental emotion dysregulation has been investigated in relation to youth emotion dysregulation, little is known about its role in the context of school refusal. This study is one of the very few that investigated both parental and adolescent factors in relation to school refusal behaviours in adolescents. The findings support the theoretical models that emphasise the role of youth and parental psychopathology in school refusal behaviours. Future management of school refusal behaviours should target adolescents’ anxiety and depression while incorporating training for parental emotion regulation skills.

Keywords: adolescents, school refusal behaviors, parental factors, anxiety and depression, emotion dysregulation

Procedia PDF Downloads 126
714 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results

Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman

Abstract:

Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.

Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection

Procedia PDF Downloads 65
713 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator

Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase

Abstract:

In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.

Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging

Procedia PDF Downloads 177
712 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
711 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms

Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano

Abstract:

In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.

Keywords: heuristic, MIP model, remedial course, school, timetabling

Procedia PDF Downloads 605
710 Molecular Detection of E. coli in Treated Wastewater and Well Water Samples Collected from Al Riyadh Governorate, Saudi Arabia

Authors: Hanouf A. S. Al Nuwaysir, Nadine Moubayed, Abir Ben Bacha, Islem Abid

Abstract:

Consumption of waste water continues to cause significant problems for human health in both developed and developing countries. Many regulations have been implied by different world authorities controlling water quality for the presence of coliforms used as standard indicators of water quality deterioration and historically leading health protection concept. In this study, the European directive for the detection of Escherichia coli, ISO 9308-1, was applied to examine and monitor coliforms in water samples collected from Wadi Hanifa and neighboring wells, Riyadh governorate, kingdom of Saudi Arabia, which is used for irrigation and industrial purposes. Samples were taken from different locations for 8 months consecutively, chlorine concentration ranging from 0.1- 0.4 mg/l, was determined using the DPD FREE CHLORINE HACH kit. Water samples were then analyzed following the ISO protocol which relies on the membrane filtration technique (0.45µm, pore size membrane filter) and a chromogenic medium TTC, a lactose based medium used for the detection and enumeration of total coliforms and E.coli. Data showed that the number of bacterial isolates ranged from 60 to 300 colonies/100ml for well and surface water samples respectively; where higher numbers were attributed to the surface samples. Organisms which apparently ferment lactose on TTC agar plates, appearing as orange colonies, were selected and additionally cultured on EMB and MacConkey agar for a further differentiation among E.coli and coliform bacteria. Two additional biochemical tests (Cytochrome oxidase and indole from tryptophan) were also investigated to detect and differentiate the presence of E.coli from other coliforms, E. coli was identified in an average of 5 to 7colonies among 25 selected colonies.On the other hand, a more rapid, specific and sensitive analytical molecular detection namely single colony PCR was also performed targeting hha gene to sensitively detect E.coli, giving more accurate and time consuming identification of colonies considered presumptively as E.coli. Comparative methodologies, such as ultrafiltration and direct DNA extraction from membrane filters (MoBio, Grermany) were also applied; however, results were not as accurate as the membrane filtration, making it a technique of choice for the detection and enumeration of water coliforms, followed by sufficiently specific enzymatic confirmatory stage.

Keywords: coliform, cytochrome oxidase, hha primer, membrane filtration, single colony PCR

Procedia PDF Downloads 318
709 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 721
708 Investigating Student Behavior in Adopting Online Formative Assessment Feedback

Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons

Abstract:

In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.

Keywords: formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control

Procedia PDF Downloads 398
707 Well-Being in the Workplace: Do Christian Leaders Behave Differently?

Authors: Mariateresa Torchia, Helene Cristini, Hannele Kauppinen

Abstract:

Leadership plays a vital role in organizations. Leaders provide directions and facilitate the processes that enable organizations to achieve their goals and objectives. However, while productivity and financial objectives are often given the greatest emphasis, leaders also have the responsibility for instituting standards of ethical conduct and moral values that guide the behavior of employees. Leaders’ behaviors such as support, empowerment and a high-quality relationship with their employees might not only prevent stress, but also improve employees’ stress coping meanwhile contributing to their affective well-being. Stemming from Girard’s Mimetic Theory, this study aims at understanding how leaders can foster well-being in organizations. To do so, we explore which is the role leaders play in conflict management, resentment management and negative emotions dissipation. Furthermore, we examine whether and to what extent religiosity impacts the way in which leaders operate in relation to employees’ well-being. Indeed, given that organizational values are crucial to ethical behavior and firms’ values may be steeled by a deep sense of spirituality and religious identification, there is a need to take a closer look at the role religion and spirituality play in influencing the way leaders impact employees’ well-being. Thus, religion might work as an overarching logic that provides a set of principles guiding leaders’ everyday practices and relations with employees. We answer our research questions using a qualitative approach. We interviewed 27 Christian leaders (members of the Christian Entrepreneurs and Leaders Association – EDC, a non-profit organization created in 1926 including 3,000 French Christian Leaders & Entrepreneurs). Our results show that well-being can have a different meaning in relation to the type of companies, size, culture, country of analysis. Moreover the values and believes of leaders influence the way they see and foster well-being among employees. Furthermore, leaders can have both a positive or negative impact on well-being. Indeed on the one side, they could increase well-being in the company while on the other hand, they could be the source of resentment and conflicts among employees. Finally, we observed that Christian leaders possess characteristics that are sometimes missing in leaders (humility, inability to compare with others, attempt to be coherent with their values and beliefs, interest in the common good instead of the personal interest, having tougher dilemmas, collectively undertaking the firm). Moreover the Christian leader believes that the common good should come before personal interest. In other words, to them, not only short –termed profit shouldn’t guide strategical decisions but also leaders should feel responsible for their employees’ well-being. Last but not least, the study is not an apologia of Christian, yet it discusses the implications of these values through the light of Girard’s mimetic theory for both theory and practice.

Keywords: Christian leaders, employees well-being, leadership, mimetic theory

Procedia PDF Downloads 121
706 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
705 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units

Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro

Abstract:

In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.

Keywords: capacitated clustering, k-means, genetic algorithm, districting problems

Procedia PDF Downloads 198
704 Auditory Perception of Frequency-Modulated Sweeps and Reading Difficulties in Chinese

Authors: Hsiao-Lan Wang, Chun-Han Chiang, I-Chen Chen

Abstract:

In Chinese Mandarin, lexical tones play an important role to provide contrasts in word meaning. They are pitch patterns and can be quantified as the fundamental frequency (F0), expressed in Hertz (Hz). In this study, we aim to investigate the influence of frequency discrimination on Chinese children’s performance of reading abilities. Fifty participants from 3rd to 4th grades, including 24 children with reading difficulties and 26 age-matched children, were examined. A serial of cognitive, language, reading and psychoacoustic tests were administrated. Magnetoencephalography (MEG) was also employed to study children’s auditory sensitivity. In the present study, auditory frequency was measured through slide-up pitch, slide-down pitch and frequency-modulated tone. The results showed that children with Chinese reading difficulties were significantly poor at phonological awareness and auditory discrimination for the identification of frequency-modulated tone. Chinese children’s character reading performance was significantly related to lexical tone awareness and auditory perception of frequency-modulated tone. In our MEG measure, we compared the mismatch negativity (MMNm), from 100 to 200 ms, in two groups. There were no significant differences between groups during the perceptual discrimination of standard sounds, fast-up and fast-down frequencies. However, the data revealed significant cluster differences between groups in the slow-up and slow-down frequencies discrimination. In the slow-up stimulus, the cluster demonstrated an upward field map at 106-151 ms (p < .001) with a strong peak time at 127ms. The source analyses of two dipole model and localization resolution model (CLARA) from 100 to 200 ms both indicated a strong source from the left temporal area with 45.845% residual variance. Similar results were found in the slow-down stimulus with a larger upward current at 110-142 ms (p < 0.05) and a peak time at 117 ms in the left temporal area (47.857% residual variance). In short, we found a significant group difference in the MMNm while children processed frequency-modulated tones with slow temporal changes. The findings may imply that perception of sound frequency signals with slower temporal modulations was related to reading and language development in Chinese. Our study may also support the recent hypothesis of underlying non-verbal auditory temporal deficits accounting for the difficulties in literacy development seen developmental dyslexia.

Keywords: Chinese Mandarin, frequency modulation sweeps, magnetoencephalography, mismatch negativity, reading difficulties

Procedia PDF Downloads 576
703 Death Due to Ulnar Artery Injury by Glassdoor: A Case Report

Authors: Ashok Kumar Rastogi

Abstract:

Glass is a material commonly used for Glassdoor, glass bottles, cookware, and containers. It can be harmful, as it is a hard and blunt object. Glass has been associated with severe injury and is a common cause of injuries warranting hospital visits to the emergency department (ED). These injuries can be accidental or intentionally inflicted. Broken glass injuries can be severe, even deadly. If broken glass shards fall out on your arm, it may cause fatal injuries. Case history: A 20-year-old male dead body was found aside the road, police informed, and a video recording ceased during an investigation. In the video recording, the person was in a drunken state (unable to walk and disoriented), wandering in the residential area road. He saw a barber shop, the shop door made of Glass. Suddenly, he hit the Glassdoor with his right hand forcefully. The Glassdoor broke into multiple pieces, and multiple injuries were seen over the right hand. Observations: Multiple small and large lacerations were seen over the right anterior part of the elbow. The main injury looked like an incised wound caused by a hard and sharp object. The main injury was noted as a laceration of size 13 x 06 cm bone deep, placed obliquely over the anteromedial aspect of the right elbow joint, its medial end at medial end of elbow joint while its anterior end was 04 cm below the elbow joint with laceration of underline brachialis muscles and complete transaction of ulnar artery and vein, skin margins looking sharply cut with irregular margins with tiny cuts at the medial lower border of laceration. Injuries were antemortem and fresh in nature, caused by hard and blunt objects but looking like hard and sharp objects. All organs were found pale, and the cause of death was shock and hemorrhage because of ulnar vessel injury. Conclusion: The findings of this case report highlight the potentially lethal consequences of glass injuries, especially those involving Glassdoors. The study underscores the importance of accurate interpretation and identification of wounds caused by Glass, as they may resemble injuries caused by other objects. It emphasizes the challenges faced by autopsy surgeons when determining the cause and manner of death in cases where visual evidence of injury is absent or when the weapon is not recovered. Ultimately, this case report serves as a reminder of the potential dangers posed by Glass and the importance of comprehensive forensic examinations.

Keywords: glassdoor, incised, wound, laceration, autopsy

Procedia PDF Downloads 76
702 Antimicrobial Resistance: Knowledge towards Antibiotics in a Mexican Population

Authors: L. D. Upegui, Isabel Alvarez-Solorza, Karina Garduno-Ulloa, Maren Boecker

Abstract:

Introduction: The increasing prevalence rate of resistant and multiresistant bacterial strains to antibiotics is a threat to public health and requires a rapid multifunctional answer. Individuals that are affected by resistant strains present a higher morbidity and mortality than individuals that are infected with the same species of bacteria but with sensitive strains. There have been identified risk factors that are related to the misuse and overuse of antibiotics, like socio-demographic characteristics and psychological aspects of the individuals that have not been explored objectively due to a lack of valid and reliable instruments for their measurement. Objective: To validate a questionnaire for the evaluation of the levels of knowledge related to the use of antibiotics in a Mexican population. Materials and Methods: Analytical cross-sectional observational study. The questionnaire consists of 12 items to evaluated knowledge (1=no, 2=not sure, 3=yes) regarding the use of antibiotics, with higher scores corresponding to a higher level of knowledge. Data are collected in a sample of students. Data collection is still ongoing. In this abstract preliminary results of 30 respondents are reported which were collected during pilot-testing. The validation of the instrument was done using the Rasch model. Fit to the Rasch model was tested checking overall fit to the model, unidimensionality, local independence and evaluating the presence of Differential Item Functioning (DIF) by age and gender. The software Rumm2030 and the SPSS were used for the analyses. Results: The participants of the pilot-testing presented an average age of 32 years ± 12.6 and 53% were women. The preliminary results indicated that the items showed good fit to the Rasch model (chi-squared=12.8 p=0.3795). Unidimensionality (number of significant t-tests of 3%) could be proven, the items were locally independent, and no DIF was observed. Knowledge was the smallest regarding statements on the role of antibiotics in treating infections, e.g., most of the respondents did not know that antibiotics would not work against viral infections (70%) and that they could also cause side effects (87%). The knowledge score ranged from 0 to 100 points with a transformed measurement (mean of knowledge 27.1 ± 4.8). Conclusions: The instrument showed good psychometric proprieties. The low scores of knowledge about antibiotics suggest that misinterpretations on the use of these medicaments were prevalent, which could influence the production of antibiotic resistance. The application of this questionnaire will allow the objective identification of 'Hight risk groups', which will be the target population for future educational campaigns, to reduce the knowledge gaps on the general population as an effort against antibiotic resistance.

Keywords: antibiotics, knowledge, misuse, overuse, questionnaire, Rasch model, validation

Procedia PDF Downloads 156
701 Serum Sickness-Like Reaction to D-Mannose Supplement

Authors: Emma Plante, Charles Ekwunwa, Diego Illanes

Abstract:

Introduction: Serum Sickness-Like Reaction (SSLR) is an inflammatory immune response characterized by a rash, polyarthralgias, and fever. SSLR usually occurs in response to a new medication (most commonly antibiotics, anticonvulsants, or antiinflammatory agents) and is believed to involve the formation of drug-specific immune complexes. Here we present a case of a 16-year-old female patient who developed an SSLR in response to the D-mannose-containing over-the-counter supplement, Uqora, used to promote bladder health. Methodology: The methodology for this study included a thorough literature search for other cases of SSLR associated with D-Mannose containing products. Data collection was performed through a review of the patient’s medical record, including history, physical examination, relevant laboratory results, and treatment plan. Findings: A 16-year-old female with a history of overactive bladder and anemia presented with a diffuse urticarial rash, headaches, joint pain, and swelling for three days. Her medications included oral contraceptive pills, iron, mirabegron, UQora, and a probiotic. Physical examination revealed a diffuse urticarial rash, and her musculoskeletal exam revealed swelling and tenderness in her wrists. Her CBC, basic metabolic panel, liver function panel, lyme titers, and urinalysis were all within normal limits. The patient was referred to an allergist, who diagnosed her with SSLR. All medications were discontinued, and she was treated with a 7-day course of prednisone and cetirizine. Her symptoms resolved, and her medications were slowly resumed sequentially over several months. However, UQora triggered a recurrence of her symptoms, and it was identified as the culprit medication. Consequently, UQora was permanently discontinued, and the patient has remained symptom-free. Conclusion: This case report describes the first documented case of SSLR caused by UQora (active ingredient D-mannose). D-Mannose is a monosaccharide found in many plants and fruits, and it is commonly used to prevent urinary tract infections. While the clinical features and timeline, in this case, were typical of SSLR, UQora as the trigger was highly unusual. Clinicians should be aware of the diverse triggers of SSLR and the importance of prompt identification and management to enhance patient safety. It is possible D-mannose was not the trigger, and further research is necessary to better understand the potential therapeutic applications of D-mannose, as well as the potential risks and interactions.

Keywords: serum sickness-like reaction, d-mannose, hypersensitivity reaction, urticaria

Procedia PDF Downloads 94
700 The Metabolism of Built Environment: Energy Flow and Greenhouse Gas Emissions in Nigeria

Authors: Yusuf U. Datti

Abstract:

It is becoming increasingly clear that the consumption of resources now enjoyed in the developed nations will be impossible to be sustained worldwide. While developing countries still have the advantage of low consumption and a smaller ecological footprint per person, they cannot simply develop in the same way as other western cities have developed in the past. The severe reality of population and consumption inequalities makes it contentious whether studies done in developed countries can be translated and applied to developing countries. Additional to this disparities, there are few or no metabolism of energy studies in Nigeria. Rather more contentious majority of energy metabolism studies have been done only in developed countries. While researches in Nigeria concentrate on other aspects/principles of sustainability such as water supply, sewage disposal, energy supply, energy efficiency, waste disposal, etc., which will not accurately capture the environmental impact of energy flow in Nigeria, this research will set itself apart by examining the flow of energy in Nigeria and the impact that the flow will have on the environment. The aim of the study is to examine and quantify the metabolic flows of energy in Nigeria and its corresponding environmental impact. The study will quantify the level and pattern of energy inflow and the outflow of greenhouse emissions in Nigeria. This study will describe measures to address the impact of existing energy sources and suggest alternative renewable energy sources in Nigeria that will lower the emission of greenhouse gas emissions. This study will investigate the metabolism of energy in Nigeria through a three-part methodology. The first step involved selecting and defining the study area and some variables that would affect the output of the energy (time of the year, stability of the country, income level, literacy rate and population). The second step involves analyzing, categorizing and quantifying the amount of energy generated by the various energy sources in the country. The third step involves analyzing what effect the variables would have on the environment. To ensure a representative sample of the study area, Africa’s most populous country, with economy that is the second biggest and that is among the top largest oil producing countries in the world is selected. This is due to the understanding that countries with large economy and dense populations are ideal places to examine sustainability strategies; hence, the choice of Nigeria for the study. National data will be utilized unless where such data cannot be found, then local data will be employed which will be aggregated to reflect the national situation. The outcome of the study will help policy-makers better target energy conservation and efficiency programs and enables early identification and mitigation of any negative effects in the environment.

Keywords: built environment, energy metabolism, environmental impact, greenhouse gas emissions and sustainability

Procedia PDF Downloads 183
699 Limiting Freedom of Expression to Fight Radicalization: The 'Silencing' of Terrorists Does Not Always Allow Rights to 'Speak Loudly'

Authors: Arianna Vedaschi

Abstract:

This paper addresses the relationship between freedom of expression, national security and radicalization. Is it still possible to talk about a balance between the first two elements? Or, due to the intrusion of the third, is it more appropriate to consider freedom of expression as “permanently disfigured” by securitarian concerns? In this study, both the legislative and the judicial level are taken into account and the comparative method is employed in order to provide the reader with a complete framework of relevant issues and a workable set of solutions. The analysis moves from the finding according to which the tension between free speech and national security has become a major issue in democratic countries, whose very essence is continuously endangered by the ever-changing and multi-faceted threat of international terrorism. In particular, a change in terrorist groups’ recruiting pattern, attracting more and more people by way of a cutting-edge communicative strategy, often employing sophisticated technology as a radicalization tool, has called on law-makers to modify their approach to dangerous speech. While traditional constitutional and criminal law used to punish speech only if it explicitly and directly incited the commission of a criminal action (“cause-effect” model), so-called glorification offences – punishing mere ideological support for terrorism, often on the web – are becoming commonplace in the comparative scenario. Although this is direct, and even somehow understandable, consequence of the impending terrorist menace, this research shows many problematic issues connected to such a preventive approach. First, from a predominantly theoretical point of view, this trend negatively impacts on the already blurred line between permissible and prohibited speech. Second, from a pragmatic point of view, such legislative tools are not always suitable to keep up with ongoing developments of both terrorist groups and their use of technology. In other words, there is a risk that such measures become outdated even before their application. Indeed, it seems hard to still talk about a proper balance: what was previously clearly perceived as a balancing of values (freedom of speech v. public security) has turned, in many cases, into a hierarchy with security at its apex. In light of these findings, this paper concludes that such a complex issue would perhaps be better dealt with through a combination of policies: not only criminalizing ‘terrorist speech,’ which should be relegated to a last resort tool, but acting at an even earlier stage, i.e., trying to prevent dangerous speech itself. This might be done by promoting social cohesion and the inclusion of minorities, so as to reduce the probability of people considering terrorist groups as a “viable option” to deal with the lack of identification within their social contexts.

Keywords: radicalization, free speech, international terrorism, national security

Procedia PDF Downloads 197
698 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 410
697 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
696 Inpatient Drug Related Problems and Pharmacist Intervention at a Tertiary Care Teaching Hospital in South India: A Retrospective Study

Authors: Bollu Mounica

Abstract:

Background: Nowadays drug related problems were seen very commonly within the health care practice. These could result in the medication errors, adverse events, drug interactions and harm to patients. Pharmacist has an identified role in minimizing and preventing such type of problems. Objectives: To detect the incidence of drug related problems for the hospitalized patient, and to analyze the clinical pharmacist interventions performed during the review of prescription orders of the general medicine, psychiatry, surgery, pediatrics, gynaecology units of a large tertiary care teaching hospital. Methods: It was a retrospective, observational and interventional study. The analysis took place daily with the following parameters: dose, rate of administration, presentation and/or dosage form, presence of inappropriate/unnecessary drugs, necessity of additional medication, more proper alternative therapies, presence of relevant drug interactions, inconsistencies in prescription orders, physical-chemical incompatibilities/solution stability. From this evaluation, the drug therapy problems were classified, as well as the resulting clinical interventions. For a period starting November 2012 until December 2014, the inpatient medication charts and orders were identified and rectified by ward and practicing clinical pharmacists within the inpatient pharmacy services in a tertiary care teaching hospital on routine daily activities. Data was collected and evaluated. The causes of this problem were identified. Results: A total of 360 patients were followed. Male (71.66%) predominance was noted over females (28.33%). Drug related problems were more commonly seen in patients aged in between 31-60. Most of the DRP observed in the study resulted from the dispensing errors (26.11%), improper drug selection (17.22%), followed by untreated indications (14.4%) Majority of the clinical pharmacist recommendations were on need for proper dispensing (26.11%), and drug change (18.05%). Minor significance of DRPs were noted high (41.11 %), whereas (35.27 %) were moderate and (23.61 %) were major. The acceptance rate of intervening clinical pharmacist recommendation and change in drug therapy was found to be high (86.66%). Conclusion: Our study showed that the prescriptions reviewed had some drug therapy problem and the pharmacist interventions have promoted positive changes needed in the prescriptions. In this context, routine participation of clinical pharmacists in clinical medical rounds facilitates the identification of DRPs and may prevent their occurrence.

Keywords: drug related problems, clinical pharmacist, drug prescriptions, drug related problems, intervention

Procedia PDF Downloads 304
695 Geochemical Characterization for Identification of Hydrocarbon Generation: Implication of Unconventional Gas Resources

Authors: Yousif M. Makeen

Abstract:

This research will address the processes of geochemical characterization and hydrocarbon generation process occurring within hydrocarbon source and/or reservoir rocks. The geochemical characterization includes organic-inorganic associations that influence the storage capacity of unconventional hydrocarbon resources (e.g. shale gas) and the migration process of oil/gas of the petroleum source/reservoir rocks. Kerogen i.e. the precursor of petroleum, occurs in various forms and types, may either be oil-prone, gas-prone, or both. China has a number of petroleum-bearing sedimentary basins commonly associated with shale gas, oil sands, and oil shale. Taken Sichuan basin as a selected basin in this study, the Sichuan basin has recorded notable successful discoveries of shale gas especially in the marine shale reservoirs within the area. However, a notable discoveries of lacustrine shale in the North-Este Fuling area indicate the accumulation of shale gas within non-marine source rock. The objective of this study is to evaluate the hydrocarbon storage capacity, generation, and retention processes in the rock matrix of hydrocarbon source/reservoir rocks within the Sichuan basin using an advanced X-ray tomography 3D imaging computational technology, commonly referred to as Micro-CT, SEM (Scanning Electron Microscope), optical microscope as well as organic geochemical facilities (e.g. vitrinite reflectance and UV light). The preliminary results of this study show that the lacustrine shales under investigation are acting as both source and reservoir rocks, which are characterized by very fine grains and very low permeability and porosity. Three pore structures have also been characterized in the study in the lacustrine shales, including organic matter pores, interparticle pores and intraparticle pores using x-ray Computed Tomography (CT). The benefits of this study would be a more successful oil and gas exploration and higher recovery factor, thus having a direct economic impact on China and the surrounding region. Methodologies: SRA TOC/TPH or Rock-Eval technique will be used to determine the source rock richness (S1 and S2) and Tmax. TOC analysis will be carried out using a multi N/C 3100 analyzer. The SRA and TOC results were used in calculating other parameters such as hydrogen index (HI) and production index (PI). This analysis will indicate the quantity of the organic matter. Minimum TOC limits generally accepted as essential for a source-rock are 0.5% for shales and 0.2% for carbonates. Contributions: This research could solve issues related to oil potential, provide targets, and serve as a pathfinder to future exploration activity in the Sichuan basin.

Keywords: shale gas, unconventional resources, organic chemistry, Sichuan basin

Procedia PDF Downloads 37
694 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
693 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia

Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov

Abstract:

An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.

Keywords: HIV, resistance, mutations, treatment

Procedia PDF Downloads 93
692 Status of Sensory Profile Score among Children with Autism in Selected Centers of Dhaka City

Authors: Nupur A. D., Miah M. S., Moniruzzaman S. K.

Abstract:

Autism is a neurobiological disorder that affects physical, social, and language skills of a person. A child with autism feels difficulty for processing, integrating, and responding to sensory stimuli. Current estimates have shown that 45% to 96 % of children with Autism Spectrum Disorder demonstrate sensory difficulties. As autism is a worldwide burning issue, it has become a highly prioritized and important service provision in Bangladesh. The sensory deficit does not only hamper the normal development of a child, it also hampers the learning process and functional independency. The purpose of this study was to find out the prevalence of sensory dysfunction among children with autism and recognize common patterns of sensory dysfunction. A cross-sectional study design was chosen to carry out this research work. This study enrolled eighty children with autism and their parents by using the systematic sampling method. In this study, data were collected through the Short Sensory Profile (SSP) assessment tool, which consists of 38 items in the questionnaire, and qualified graduate Occupational Therapists were directly involved in interviewing parents as well as observing child responses to sensory related activities of the children with autism from four selected autism centers in Dhaka, Bangladesh. All item analyses were conducted to identify items yielding or resulting in the highest reported sensory processing dysfunction among those children through using SSP and Statistical Package for Social Sciences (SPSS) version 21.0 for data analysis. This study revealed that almost 78.25% of children with autism had significant sensory processing dysfunction based on their sensory response to relevant activities. Under-responsive sensory seeking and auditory filtering were the least common problems among them. On the other hand, most of them (95%) represented that they had definite to probable differences in sensory processing, including under-response or sensory seeking, auditory filtering, and tactile sensitivity. Besides, the result also shows that the definite difference in sensory processing among 64 children was within 100%; it means those children with autism suffered from sensory difficulties, and thus it drew a great impact on the children’s Daily Living Activities (ADLs) as well as social interaction with others. Almost 95% of children with autism require intervention to overcome or normalize the problem. The result gives insight regarding types of sensory processing dysfunction to consider during diagnosis and ascertaining the treatment. So, early sensory problem identification is very important and thus will help to provide appropriate sensory input to minimize the maladaptive behavior and enhance to reach the normal range of adaptive behavior.

Keywords: autism, sensory processing difficulties, sensory profile, occupational therapy

Procedia PDF Downloads 65
691 The Impact of Mycotoxins on the Anaerobic Digestion Process

Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold

Abstract:

Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.

Keywords: Anaerobic digestion, Biogas, Feedstock conservation, Fungal mycotoxins, Inhibition, process failure

Procedia PDF Downloads 130
690 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique

Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen

Abstract:

Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.

Keywords: pesticides, glyphosate, rapid, detection, modified, sensor

Procedia PDF Downloads 177
689 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 317