Search results for: L2 vocabulary learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7390

Search results for: L2 vocabulary learning

1780 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 170
1779 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 163
1778 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking

Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim

Abstract:

In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.

Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network

Procedia PDF Downloads 165
1777 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 106
1776 Judicial Independence in Uzbekistan and the United States of America: Comparative-Legal Analysis

Authors: Botirjon Kosimov

Abstract:

This work sheds light on the reforms towards the independence of the judiciary in Uzbekistan, as well as issues of further ensuring judicial independence in the country based on international values, particularly the legal practice of the United States. In every democratic state infringed human rights are reinstated and violated laws are protected by the help of justice based on the strict principle of judicial independence. The realization of this principle in Uzbekistan has been paid much attention since the proclamation of its independence. In the country, a series of reforms have been implemented in the field of the judiciary in order to actualize the principle of judicial independence. Uzbekistan has been reforming the judiciary considering both international and national values and practice of foreign countries. While forming a democratic state based on civil society, Uzbekistan shares practice with the most developed countries in the world. The United States of America can be a clear example which is worth learning how to establish and ensure an independent judiciary. It seems that although Uzbekistan has reformed the judiciary efficiently, it should further reform considering the legal practice of the United States.

Keywords: dependent judges, independent judges, judicial independence, judicial reforms, judicial life tenure, obstacles to judicial independence

Procedia PDF Downloads 268
1775 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 266
1774 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 329
1773 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 200
1772 Identifying Understanding Expectations of School Administrators Regarding School Assessment

Authors: Eftah Bte. Moh Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor

Abstract:

This study aims to identify the understanding expectations of school administrators concerning school assessment. The researcher utilized a qualitative descriptive study on 19 administrators from three secondary schools in the North Kinta district. The respondents had been interviewed on their understanding expectations of school assessment using the focus group discussion method. Overall findings showed that the administrators’ understanding expectations of school assessment was weak; especially in terms of content focus, articulation across age and grade, transparency and fairness, as well as the pedagogical implications. Findings from interviews indicated that administrators explained their understanding expectations of school assessment from the aspect of school management, and not from the aspect of instructional leadership or specifically as assessment leaders. The study implications from the administrators’ understanding expectations may hint at the difficulty of the administrators to function as assessment leaders, in order to reduce their focus as manager, and move towards their primary role in the process of teaching and learning. The administrator, as assessment leaders, would be able to reach assessment goals via collaboration in identifying and listing teacher assessment competencies, how to construct assessment capacity, how to interpret assessment correctly, the use of assessment and how to use assessment information to communicate confidently and effectively to the public.

Keywords: assessment leaders, assessment goals, instructional leadership, understanding expectation of assessment

Procedia PDF Downloads 460
1771 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
1770 A Nexus between Research and Teaching: Fostering Student Expectations of Research-Informed Teaching Approaches

Authors: Lina S. Calucag

Abstract:

Integration of research and teaching in higher education can provide valuable ways of enhancing the student learning experience, but establishing such integrative links can be complex and problematic, given different practices and levels of understanding. This study contributes to the pedagogical literature in drawing on findings from students’ survey exploring perceptions of research-informed teaching to examine how links between research and teaching can be suitably strengthened. The study employed a descriptive research design limited to the undergraduate students taking thesis/capstone courses in the tertiary levels private or public colleges and universities across the globe as respondents of the study. The findings noted that the students’ responses from different disciplines: engineering, science, education, business-related, and computer on the nexus between research and teaching is remarkable in fostering student expectations of research-informed teaching approaches. Students’ expectations on research-led, research-oriented, research-based, and research-tutored are enablers in linking research and teaching. It is recommended that experimental studies should be conducted using the four different research-informed teaching approaches in the classroom, namely: research-led, research-oriented, research-based, and research-tutored.

Keywords: research-led, research-informed teaching, research-oriented teaching, research-tutored, research-based

Procedia PDF Downloads 165
1769 Dual Language Immersion Models in Theory and Practice

Authors: S. Gordon

Abstract:

Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.

Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French

Procedia PDF Downloads 180
1768 Value-Based Management Education Need of the Hour

Authors: Surendar Vaddepalli

Abstract:

Management education plays a crucial role to enable industry to cope with emerging challenges. It has spread in the last fifteen-twenty years in India and gained popularity as it was aimed at imbibing versatility and multi-tasking abilities in student community. Several management institutions started looking at upgrading their competencies in terms of faculty, research and industry interaction. The competitive business environment has been one of the drivers that paved the way for growing demand for management graduates in the employment market. Industry expects their executives to be engaged in a constant learning process. The ever-increasing demand for managers has led to establish more management institutions; however, the growth was not in line with the expectations from the industry. While top Business Schools are continuously changing the contents and delivery methodologies, academic standards of most of the other Business Schools are not up to the mark and quality of service provided by these institutes has opened various issues for discussion. On this back ground it is important to address the concerns of Indian management education experiencing with time and we have to rethink about the management education and efforts should be made to create a dynamic environment. This paper ties to study the current trends and tries to find out need for value based management education in India to rejuvenate it.

Keywords: management education, management, value based management education, business school, India

Procedia PDF Downloads 380
1767 Approach-Avoidance and Intrinsic-Extrinsic Motivation of Adolescent Computer Games Players

Authors: Monika Paleczna, Barbara Szmigielska

Abstract:

The period of adolescence is a time when young people are becoming more and more active and conscious users of the digital world. One of the most frequently undertaken activities by them is computer games. Young players can choose from a wide range of games, including action, adventure, strategy, and logic games. The main aim of this study is to answer the question about the motivation of teenage players. The basic question is what motivates young players to play computer games and what motivates them to play a particular game. Fifty adolescents aged 15-17 participated in the study. They completed a questionnaire in which they determined what motivates them to play, how often they play computer games, and what type of computer games they play most often. It was found that entertainment and learning English are among the most important motives. The most important specific features related to a given game are the knowledge of its previous parts and the ability to play for free. The motives chosen by the players will be described in relation to the concepts of internal and external as well as approach and avoidance motivation. An additional purpose of this study is to present data concerning preferences regarding the type of games and the amount of time they spend playing.

Keywords: computer games, motivation, game preferences, adolescence

Procedia PDF Downloads 187
1766 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 167
1765 Developing Students’ Intercultural Understanding and Awareness through Adapting an Intercultural Pedagogy in Foreign Language Teaching

Authors: Guerriche Amina

Abstract:

The recent trends in foreign language teaching -influenced widely by the process of globalization, interculturalism, and global flows and migration- are leaning towards adopting an intercultural perspective to help in developing students who are global citizens able to effectively function across diverse boundaries (cultural, social, geographical). Researchers call for intercultural learning and teaching perspective that would foster and increase intercultural awareness and understanding (e.g., Guilherme, 2002; Byram et al., 2002). The present research aims at unfolding whether including the cultural dimension in foreign language instruction can help in developing students’ intercultural understanding and awareness. In doing so, a cultural pedagogical experiment was designed and conducted for the period of one year at the level of the university. Data were collected qualitatively and analyzed thematically. Results help in drawing important implications for educational institutions, foreign language teachers, and syllabus designers about the importance and effectiveness of perceiving foreign language instruction as a social activity that can nurture interculturally competent individuals who adequately respond to the demands of today’s intercultural and globalized societies.

Keywords: foreign language teaching, intercultural awareness, language and culture, intercultural understanding

Procedia PDF Downloads 136
1764 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 197
1763 Systematic Review of Misconceptions: Tools for Diagnostics and Remediation Models for Misconceptions in Physics

Authors: Muhammad Iqbal, Edi Istiyono

Abstract:

Misconceptions are one of the problems in physics learning where students' understanding is not in line with scientific theory. The aim of this research is to find diagnostic tools to identify misconceptions and how to remediate physics misconceptions. In this research, the articles that will be reviewed come from the Scopus database related to physics misconceptions from 2013-2023. The articles obtained from the Scopus database were then selected according to the Prisma model, so 29 articles were obtained that focused on discussing physics misconceptions, especially regarding diagnostic tools and remediation methods. Currently, the most widely used diagnostic tool is the four-tier test, which is able to measure students' misconceptions in depth by knowing whether students are guessing or not and from then on, there is also a trend toward five-tier diagnostic tests with additional sources of information obtained. So that the origin of students' misconceptions is known. There are several ways to remediate student misconceptions, namely 11 ways and one of the methods used is digital practicum so that abstract things can be visualized into real ones. This research is limited to knowing what tools are used to diagnose and remediate misconceptions, so it is not yet known how big the effect of remediation methods is on misconceptions. The researcher recommends that in the future further research can be carried out to find out the most appropriate remediation method for remediating student misconceptions.

Keywords: misconception, remediation, systematic review, tools

Procedia PDF Downloads 41
1762 An Evaluation of the MathMates Program Implemented in Andrew Hamilton Public School as Part of College-Community Initiatives

Authors: Haofei Li

Abstract:

To support academic growth and foster love of learning, MathMates has been introduced for grade 6-8 students at Andrew Hamilton public school in 2022. The program is targeted at students from diverse backgrounds, particularly those underperforming in Pennsylvania System of School Assessment (PSSA) exams. Then, this study aims to evaluate the efficacy of MathMates by comparing student performance on the PSSA test, before and after the intervention. Through a randomized control trial, the study will collect associated costs using the ingredients method and measure the effectiveness for cost-effectiveness analysis. Text messages will be sent to parents/guardians as a reminder of the program and to encourage student participation. The findings of this study will provide valuable insights for funding organizations seeking to understand the impact and costs of math tutoring interventions on student academic achievement, which also emphasizes the importance of the collaborative efforts between higher education and local public schools.

Keywords: mathematics education, mathematics tutoring, college-community initiative, middle schools, Philadelphia public schools, after-school program, PSSA

Procedia PDF Downloads 93
1761 Narrative Inquiry into Teachers’ Experiences of Empathy in English Language Teaching

Authors: Yao Chen

Abstract:

Empathy is crucial for teachers working with teenagers in secondary school. Despite that, little attention was paid to English language teachers’ experiences of empathy in class. Empathy contains cognitive, emotional, and behavioral components that are manifested in the teaching practice. The qualitative study focused on how Chinese ELT teachers expressed empathy in interaction with students in public high schools and private institutions and what factors might lead them to show empathy in different ways. Four participants were invited to attend the individual interviews to share their stories about their empathic experiences. Classroom observation was conducted to investigate teachers’ language use in teaching and non-verbal communication with students to witness their behavior of expressing empathy. Through thematic analysis, three main themes relevant to different types of empathy in teachers’ interaction with students were generated: 1) perspective taking, 2) emotional connections, 3) action taking. Based on the participants’ statements of their personal experiences, the discussion concluded the reasons for their differences in expressing empathy. The result underlined the significance of the role of empathy in building a rapport with students and motivating their language learning. Further implications for the role of empathy in ELT teachers’ professional development are also discussed.

Keywords: teacher empathy, experiences, interaction with students, ELT class

Procedia PDF Downloads 66
1760 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications

Procedia PDF Downloads 340
1759 Environmental Education for Sustainable Development in Bangladesh and Its Challenges

Authors: Md. Kamal Uddin

Abstract:

Bangladesh is trying to achieve Sustainable Development Goals (SDGs) by 2030. Environmental Education (EE) is very vital to reaching the agenda of SDGs. However, a lack of environmental awareness and gaps in theoretical knowledge and its practices still exists in Bangladesh. Therefore, this research aims to understand the students’ perceptions of whether and how their behaviour is environment-friendly to achieve SDGs. It also addresses teachers’ perceptions of what are the shortcomings of environmental education in Bangladesh. It uses the qualitative and quantitative techniques of data collection and analysis based on in-depth interviews, surveys among different categories of participants and classroom observation. The paper finds that the level of EE and students’ awareness of the environment is inadequate. Some teachers believe that the EE is not better in Bangladesh due to the absence of practical learning of EE, lack of the motivations and actions, institutional weakness, inadequate policies, poor implementation, and cultural and traditional beliefs. Thus, this paper argues that Bangladeshi EE is not adequate to change the behaviour of the students towards the environment, which makes it difficult for the country to ensure SD. Thus, this research suggests that there is a need to revise the environmental education policy to change the behaviour and structure of the country for sustainable development.

Keywords: environmental education, sustainable development, environmental practice, environmental behaviour, Bangladesh

Procedia PDF Downloads 201
1758 Fu Hao From the East: Between Chinese Traditions and Western Pop Cultures

Authors: Yi Meng, YunGao

Abstract:

Having been studied and worked in North America and Europe, we, two Chinese art educators, have been enormously influenced by eastern and western cultures. Thus, we aim to enhance students’ learning experiences by exploring and amalgamating both cultures for art creating. This text draws on our action research study of students’ visual literacy practices in a foundation sketching course in a major Chinese university, exploring art forms by cross-utilizing various cultural aspects. Instead of relying on the predominant western observational drawing skills in our classroom, we taught students about ancient Chinese art in the provincial museum, using Fu Hao owl-shaped vessel, a Shang Dynasty national treasure, as the final sketch project of this course. We took up multimodal literacy, which emphasized students’ critical use of creativity to exploit the semiotic potentials of communicative modes to address diverse cultural issues through their multimodal design. We used the Hong Kong-based artist Tik Ka’s artworks to demonstrate the cultural amalgamation of Chinese traditions and western pop cultures. Collectively, these approaches create a dialogical space for students to experience, analyze, and negotiate with complex modes and potentially transform their understanding of both cultures by redesigning Fu Hao.

Keywords: Chinese traditions, western pop cultures, Fu Hao, arts education, design sketch

Procedia PDF Downloads 126
1757 Instruction High-Leverage Practices in Reading Instruction for Adolescents

Authors: Nicole Pyle, Daniel Pyle, Christa Haring, Marty Hougen

Abstract:

Effective special education teachers utilize evidence-based practices for adolescent reading instruction and target the skills needed to improve the reading of older struggling readers. High-Leverage Practices (HLPs) are critical to helping students with disabilities learn important content. Therefore, special education teachers are encouraged to implement HLPs to maximize the learning of students with disabilities, including students with reading difficulties. Teachers’ implementation of HLPs in reading comprehension instruction should aim to develop adolescents’ understanding of grade-level narrative texts and informational texts, including content area texts. Instruction High-Leverage Practices (11-22) that ensure effective implementation of evidence-based practice in reading comprehension instruction for adolescents are presented. Effective reading comprehension activities within the 12 Instruction HLPs are illustrated.

Keywords: high-leverage practices, adolescent, instructional activities, students with disabilities

Procedia PDF Downloads 82
1756 An Examination of the Effectiveness of iPad-Based Augmentative and Alternative Intervention on Acquisition, Generalization and Maintenance of the Requesting Information Skills of Children with Autism

Authors: Amaal Almigal

Abstract:

Technology has been argued to offer distinct advantages and benefits for teaching children with autism spectrum disorder (ASD) to communicate. One aspect of this technology is augmentative and alternative communication (AAC) systems such as picture exchange or speech generation devices. Whilst there has been significant progress in teaching these children to request their wants and needs with AAC, there remains a need for developing technologies that can really make a difference in teaching them to ask questions. iPad-based AAC can be effective for communication. However, the effectiveness of this type of AAC in teaching children to ask questions needs to be examined. Thus, in order to examine the effectiveness of iPad-based AAC in teaching children with ASD to ask questions, This research will test whether iPad leads to more learning than a traditional approach picture and text cards does. Two groups of children who use AAC will be taught to ask ‘What is it?’ questions. With the first group, low-tech AAC picture and text cards will be used, while an iPad-based AAC application called Proloquo2Go will be used with the second group. Interviews with teachers and parents will be conducted before and after the experiment. The children’s perspectives will also be considered. The initial outcomes of this research indicate that iPad can be an effective tool to help children with autism to ask questions.

Keywords: autism, communication, information, iPad, pictures, requesting

Procedia PDF Downloads 265
1755 An Appraisal of Maintenance Management Practices in Federal University Dutse and Jigawa State Polytechnic Dutse, Nigeria

Authors: Aminu Mubarak Sadis

Abstract:

This study appraised the maintenance management practice in Federal University Dutse and Jigawa State Polytechnic Dutse, in Nigeria. The Physical Planning, Works and Maintenance Departments of the two Higher Institutions (Federal University Dutse and Jigawa State Polytechnic) are responsible for production and maintenance management of their physical assets. Over–enrollment problem has been a common feature in the higher institutions in Nigeria, Data were collected by the administered questionnaires and subsequent oral interview to authenticate the completed questionnaires. Random sampling techniques was used in selecting 150 respondents across the various institutions (Federal University Dutse and Jigawa State Polytechnic Dutse). Data collected was analyzed using Statistical Package for Social Science (SPSS) and t-test statistical techniques The conclusion was that maintenance management activities are yet to be given their appropriate attention on functions of the university and polytechnic which are crucial to improving teaching, learning and research. The unit responsible for maintenance and managing facilities should focus on their stated functions and effect changes were possible.

Keywords: appraisal, maintenance management, university, Polytechnic, practices

Procedia PDF Downloads 255
1754 Design for Classroom Units: A Collaborative Multicultural Studio Development with Chinese Students

Authors: C. S. Caires, A. Barbosa, W. Hanyou

Abstract:

In this paper, we present the main results achieved during a five-week international workshop on Interactive Furniture for the Classroom, with 22 Chinese design students, in Jiangmen city (Guangdong province, China), and five teachers from Portugal, France, Iran, Macao SAR, and China. The main goal was to engage design students from China with new skills and practice methodologies towards interactive design research for furniture and product design for the classroom. The final results demonstrate students' concerns on improving Chinese furniture design for the classrooms, including solutions related to collaborative learning and human-interaction design for interactive furniture products. The findings of the research led students to the fabrication of five original prototypes: two for kindergartens ('Candy' and 'Tilt-tilt'), two for primary schools ('Closer' and 'Eks(x)'), and one for art/creative schools ('Wave'). From the findings, it was also clear that collaboration, personalization, and project-based teaching are still neglected when designing furniture products for the classroom in China. Students focused on these issues and came up with creative solutions that could transform this educational field in China.

Keywords: product design, collaborative education, interactive design, design research and prototyping

Procedia PDF Downloads 131
1753 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 136
1752 The Use of Digital Stories in the Development of Critical Literacy

Authors: Victoria Zenotz

Abstract:

For Fairclough (1989) critical literacy is a tool to enable readers and writers to build up meaning in discourse. More recently other authors (Leu et al., 2004) have included the new technology context in their definition of literacy. In their view being literate nowadays means to “successfully use and adapt to the rapidly changing information and communication technologies and contexts that continuously emerge in our world and influence all areas of our personal and professional lives.” (Leu et al., 2004: 1570). In this presentation the concept of critical literacy will be related to the creation of digital stories. In the first part of the presentation concepts such as literacy and critical literacy are examined. We consider that real social practices will help learners may improve their literacy level. Accordingly, we show some research, which was conducted at a secondary school in the north of Spain (2013-2014), to illustrate how the “writing” of digital stories may contribute to the development of critical literacy. The use of several instruments allowed the collection of data at the different stages of their creative process including watching and commenting models for digital stories, planning a storyboard, creating and selecting images, adding voices and background sounds, editing and sharing the final product. The results offer some valuable insights into learners’ literacy progress.

Keywords: literacy, computer assisted language learning, esl

Procedia PDF Downloads 402
1751 A Process to Support Multidisciplinary Teams to Design Serious Games

Authors: Naza Djafarova, Tony Bates, Margaret Verkuyl, Leonora Zefi, Ozgur Turetken, Alex Ferworn, Mastrilli Paula, Daria Romaniuk, Kosha Bramesfeld, Anastasia Dimitriadou, Cheryl To

Abstract:

Designing serious games for education is a challenging and resource-intensive effort. If a well-designed process that balances pedagogical principles with game mechanics is in place, it can help to simplify the design process of serious games and increase efficiency. Multidisciplinary teams involved in designing serious games can benefit tremendously from such a process in their endeavours to develop and implement these games at undergraduate and graduate levels. This paper presentation will outline research results on identified gaps within existing processes and frameworks and present an adapted process that emerged from the research. The research methodology was based on a survey, semi-structured interviews and workshops for testing the adapted process for game design. Based on the findings, the authors propose a simple process for the pre-production stage of serious game design that may help guide multidisciplinary teams in their work. This process was used to facilitate team brainstorming, and is currently being tested to assess if multidisciplinary teams find value in using it in their process of designing serious games.

Keywords: serious game-design, multidisciplinary team, game design framework, learning games, multidisciplinary game design process

Procedia PDF Downloads 432