Search results for: quantum phase transition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6257

Search results for: quantum phase transition

677 The MoEDAL-MAPP* Experiment - Expanding the Discovery Horizon of the Large Hadron Collider

Authors: James Pinfold

Abstract:

The MoEDAL (Monopole and Exotics Detector at the LHC) experiment deployed at IP8 on the Large Hadron Collider ring was the first dedicated search experiment to take data at the Large Hadron Collider (LHC) in 2010. It was designed to search for Highly Ionizing Particle (HIP) avatars of new physics such as magnetic monopoles, dyons, Q-balls, multiply charged particles, massive, slowly moving charged particles and long-lived massive charge SUSY particles. We shall report on our search at LHC’s Run-2 for Magnetic monopoles and dyons produced in p-p and photon-fusion. In more detail, we will report our most recent result in this arena: the search for magnetic monopoles via the Schwinger Mechanism in Pb-Pb collisions. The MoEDAL detector, originally the first dedicated search detector at the LHC, is being reinstalled for LHC’s Run-3 to continue the search for electrically and magnetically charged HIPs with enhanced instantaneous luminosity, detector efficiency and a factor of ten lower thresholds for HIPs. As part of this effort, we will search for massive l long-lived, singly and multiply charged particles from various scenarios for which MoEDAL has a competitive sensitivity. An upgrade to MoEDAL, the MoEDAL Apparatus for Penetrating Particles (MAPP), is now the LHC’s newest detector. The MAPP detector, positioned in UA83, expands the physics reach of MoEDAL to include sensitivity to feebly-charged particles with charge, or effective charge, as low as 10-3 e (where e is the electron charge). Also, In conjunction with MoEDAL’s trapping detector, the MAPP detector gives us a unique sensitivity to extremely long-lived charged particles. MAPP also has some sensitivity to long-lived neutral particles. The addition of an Outrigger detector for MAPP-1 to increase its acceptance for more massive milli-charged particles is currently in the Technical Proposal stage. Additionally, we will briefly report on the plans for the MAPP-2 upgrade to the MoEDAL-MAPP experiment for the High Luminosity LHC (HL-LHC). This experiment phase is designed to maximize MoEDAL-MAPP’s sensitivity to very long-lived neutral messengers of physics beyond the Standard Model. We envisage this detector being deployed in the UGC1 gallery near IP8.

Keywords: LHC, beyond the standard model, dedicated search experiment, highly ionizing particles, long-lived particles, milli-charged particles

Procedia PDF Downloads 55
676 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 343
675 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions

Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud

Abstract:

When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.

Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort

Procedia PDF Downloads 281
674 Regulatory Governance as a De-Parliamentarization Process: A Contextual Approach to Global Constitutionalism and Its Effects on New Arab Legislatures

Authors: Abderrahim El Maslouhi

Abstract:

The paper aims to analyze an often-overlooked dimension of global constitutionalism, which is the rise of the regulatory state and its impact on parliamentary dynamics in transition regimes. In contrast to Majone’s technocratic vision of convergence towards a single regulatory system based on competence and efficiency, national transpositions of regulatory governance and, in general, the relationship to global standards primarily depend upon a number of distinctive parameters. These include policy formation process, speed of change, depth of parliamentary tradition and greater or lesser vulnerability to the normative conditionality of donors, interstate groupings and transnational regulatory bodies. Based on a comparison between three post-Arab Spring countries -Morocco, Tunisia, and Egypt, whose constitutions have undergone substantive review in the period 2011-2014- and some European Union state members, the paper intends, first, to assess the degree of permeability to global constitutionalism in different contexts. A noteworthy divide emerges from this comparison. Whereas European constitutions still seem impervious to the lexicon of global constitutionalism, the influence of the latter is obvious in the recently drafted constitutions in Morocco, Tunisia, and Egypt. This is evidenced by their reference to notions such as ‘governance’, ‘regulators’, ‘accountability’, ‘transparency’, ‘civil society’, and ‘participatory democracy’. Second, the study will provide a contextual account of internal and external rationales underlying the constitutionalization of regulatory governance in the cases examined. Unlike European constitutionalism, where parliamentarism and the tradition of representative government function as a structural mechanism that moderates the de-parliamentarization effect induced by global constitutionalism, Arab constitutional transitions have led to a paradoxical situation; contrary to the public demands for further parliamentarization, the 2011 constitution-makers have opted for a de-parliamentarization pattern. This is particularly reflected in the procedures established by constitutions and regular legislation, to handle the interaction between lawmakers and regulatory bodies. Once the ‘constitutional’ and ‘independent’ nature of these agencies is formally endorsed, the birth of these ‘fourth power’ entities, which are neither elected nor directly responsible to elected officials, will raise the question of their accountability. Third, the paper shows that, even in the three selected countries, the de-parliamentarization intensity is significantly variable. By contrast to the radical stance of the Moroccan and Egyptian constituents who have shown greater concern to shield regulatory bodies from legislatures’ scrutiny, the Tunisian case indicates a certain tendency to provide lawmakers with some essential control instruments (e. g. exclusive appointment power, adversarial discussion of regulators’ annual reports, dismissal power, later held unconstitutional). In sum, the comparison reveals that the transposition of the regulatory state model and, more generally, sensitivity to the legal implications of global conditionality essentially relies on the evolution of real-world power relations at both national and international levels.

Keywords: Arab legislatures, de-parliamentarization, global constitutionalism, normative conditionality, regulatory state

Procedia PDF Downloads 124
673 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings

Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava

Abstract:

Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.

Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide

Procedia PDF Downloads 161
672 Impact of Climate Change on Some Physiological Parameters of Cyclic Female Egyptian Buffalo

Authors: Nabil Abu-Heakal, Ismail Abo-Ghanema, Basma Hamed Merghani

Abstract:

The aim of this investigation is to study the effect of seasonal variations in Egypt on hematological parameters, reproductive and metabolic hormones of Egyptian buffalo-cows. This study lasted one year extending from December 2009 to November 2010 and was conducted on sixty buffalo-cows. Group of 5 buffalo-cows at estrus phase were selected monthly. Then, after blood sampling through tail vein puncture in the 2nd day after natural service, they were divided in two samples: one with anticoagulant for hematological analysis and the other without anticoagulant for serum separation. Results of this investigation revealed that the highest atmospheric temperature was in hot summer 32.61±1.12°C versus 26.18±1.67°C in spring and 19.92±0.70°C in winter season, while the highest relative humidity % was in winter season 43.50±1.60% versus 32.50±2.29% in summer season. The rise in temperature-humidity index from 63.73±1.29 in winter to 78.53±1.58 in summer indicates severe heat stress which is associated with significant reduction in total red blood cell count (3.20±0.15×106), hemoglobin concentration (8.83±0.43 g/dl), packed cell volume (30.73±0.12%), lymphocytes % (40.66±2.33 %), serum progesterone hormone concentration (0.56±0.03 ng/mll), estradiol17-B concentration (16.8±0.64 ng/ml), triiodothyronin (T3) concentration (2.33±0.33 ng/ml) and thyroxin hormone (T4) concentration (21.66±1.66 ng/ml), while hot summer resulted in significant increase in mean cell volume (96.55±2.25 fl), mean cell hemoglobin (30.81±1.33 pg), total white blood cell count (10.63±0.97×103), neutrophils % (49.66±2.33%), serum prolactin hormone (PRL) concentration (23.45±1.72 ng/ml) and cortisol hormone concentration (4.47±0.33 ng/ml) compared to winter season. There was no significant seasonal variation in mean cell hemoglobin concentration (MCHC). It was concluded that in Egypt there was a seasonal variation in atmospheric temperature, relative humidity, temperature humidity index (THI) and the rise in THI above the upper critical level (72 units), which, for lactating buffalo-cows in Egypt is the major constraint on buffalo-cows' hematological parameters and hormonal secretion that affects animal reproduction. Hence, we should improve climatic conditions inside the dairy farm to eliminate or reduce summer infertility.

Keywords: buffalo, climate change, Egypt, physiological parameters

Procedia PDF Downloads 638
671 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 62
670 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 121
669 Transitional Separation Bubble over a Rounded Backward Facing Step Due to a Temporally Applied Very High Adverse Pressure Gradient Followed by a Slow Adverse Pressure Gradient Applied at Inlet of the Profile

Authors: Saikat Datta

Abstract:

Incompressible laminar time-varying flow is investigated over a rounded backward-facing step for a triangular piston motion at the inlet of a straight channel with very high acceleration, followed by a slow deceleration experimentally and through numerical simulation. The backward-facing step is an important test-case as it embodies important flow characteristics such as separation point, reattachment length, and recirculation of flow. A sliding piston imparts two successive triangular velocities at the inlet, constant acceleration from rest, 0≤t≤t0, and constant deceleration to rest, t0≤tKeywords: laminar boundary layer separation, rounded backward facing step, separation bubble, unsteady separation, unsteady vortex flows

Procedia PDF Downloads 57
668 Effect of Semantic Relational Cues in Action Memory Performance over School Ages

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi

Abstract:

Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.

Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues

Procedia PDF Downloads 263
667 Effects of Spectrotemporal Modulation of Music Profiles on Coherence of Cardiovascular Rhythms

Authors: I-Hui Hsieh, Yu-Hsuan Hu

Abstract:

The powerful effect of music is often associated with changes in physiological responses such as heart rate and respiration. Previous studies demonstrate that Mayer waves of blood pressure, the spontaneous rhythm occurring at 0.1 Hz, corresponds to a progressive crescendo of the musical phrase. However, music contain dynamic changes in temporal and spectral features. As such, it remains unclear which aspects of musical structures optimally affect synchronization of cardiovascular rhythms. This study investigates the independent contribution of spectral pattern, temporal pattern, and dissonance level on synchronization of cardiovascular rhythms. The regularity of acoustical patterns occurring at a periodic rhythm of 0.1 Hz is hypothesized to elicit the strongest coherence of cardiovascular rhythms. Music excerpts taken from twelve pieces of Western classical repertoire were modulated to contain varying degrees of pattern regularity of the acoustic envelope structure. Three levels of dissonance were manipulated by varying the harmonic structure of the accompanying chords. Electrocardiogram and photoplethysmography signals were recorded for 5 minutes of baseline and simultaneously while participants listen to music excerpts randomly presented over headphones in a sitting position. Participants were asked to indicate the pleasantness of each music excerpt by adjusting via a slider presented on screen. Analysis of the Fourier spectral power of blood pressure around 0.1 Hz showed a significant difference between music excerpts characterized by spectral and temporal pattern regularity compared to the same content in random pattern. Phase coherence between heart rate and blood pressure increased significantly during listening to spectrally-regular phrases compared to its matched control phrases. The degree of dissonance of the accompanying chord sequence correlated with level of coherence between heart rate and blood pressure. Results suggest that low-level auditory features of music can entrain coherence of autonomic physiological variables. These findings have potential implications for using music as a clinical and therapeutic intervention for regulating cardiovascular functions.

Keywords: cardiovascular rhythms, coherence, dissonance, pattern regularity

Procedia PDF Downloads 140
666 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 86
665 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 177
664 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils

Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman

Abstract:

Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.

Keywords: quinoa, salinity, halophyte, genotype

Procedia PDF Downloads 552
663 Application of Topical Imiquimod for Treatment Cervical Intraepithelial Neoplasia in Young Women: A Preliminary Result of a Pilot Study

Authors: Phill-Seung Jung, Dae-Yeon Kim

Abstract:

Objectives: In young, especially nulliparous women, it is not easy to decide on excisional therapy for cervical intraepithelial neoplasia (CIN). We aimed to evaluate how effective topical imiquimod is in the treatment of high-grade CIN so that excisional therapy can be avoided in young women. Methods: Patients with CIN were allocated to this pilot study. They did not want excisional therapy and agreed with topical imiquimod therapy, which required once-a-week hospital visit for 8 weeks for the application of imiquimod to the cervix by a gynecologic oncologist. If the lesion got worse during treatment, it was decided to convert imiquimod therapy to excisional therapy. Results: A total of 36 patients with a median age of 29 years (range, 22–41 years) agreed to receive topical imiquimod therapy. Of these, 32 patients (88.9%) were positive for high-risk human papillomavirus (HR HPV). Twenty-five patients (69.4%) had low-grade squamous intraepithelial lesion (LSIL), and 11 (30.6%) had high-grade squamous intraepithelial lesion (HSIL) on their initial LBC. Twenty-eight patients underwent punch biopsy, which showed CIN 1 in 7 (19.4%), CIN 2 in 11 (30.6%), and CIN 3 in 10 (27.8%) patients. Twenty patients finished the 8-week imiquimod therapy. Among them, 14 patients had CIN 2 or 3, and 6 patients had CIN 1. HR HPV was positive in 12 patients. On the last examination, 14 patients (70.0%) had negative intraepithelial lesions, 3 (15.0%) had atypical squamous cells of undetermined significance, and 1 (5.0%) had LSIL. Two patients had persistent HSIL: 1 patient underwent loop electrosurgical excision procedure, resulting in CIN 3 with positive resection margin, and the other patient underwent punch biopsy, resulting in intermediate cells and restarted imiquimod therapy. Only 7 patients were negative for HR HPV. Conclusions: This study showed that topical imiquimod therapy was effective for the treatment of high-grade CIN, with a histologic regression rate of 85.7% (14/20) and HPV eradication rate of 25.0% (8/32). Based on our findings, topical imiquimod therapy might have a successful therapeutic effect in young women with CIN 2-3 so that they can avoid excisional therapy. In addition, it could be a more reassuring treatment option for CIN 1 than just follow-up after few months. To confirm its efficacy, a phase II study with larger cohort would be needed.

Keywords: Imiquimod, Cervical Intraepthelial Neoplasia, Cervical Dysplasia, Human Papillomavirus

Procedia PDF Downloads 242
662 Role of the Midwifery Trained Registered Nurse in Postnatal Units at Tertiary Care Hospitals in the Western Province of Sri Lanka: A Postal Survey

Authors: Sunethra Jayathilake, Vathsala Jayasuriya-Illesinghe, Kerstin Samarasinghe, Himani Molligoda, Rasika Perera

Abstract:

In Sri Lanka, postnatal care in the state hospitals is provided by different professional categories: Midwifery trained registered nurses (MTRNs), Registered Nurses (RNs) who do not have midwifery training, doctors and midwives. Even though four professional categories provide postnatal care to mothers and newborn babies, they are not aware of their own tasks and responsibilities in postnatal care. Particularly MTRN’s role in the postnatal unit is unclear. The current study aimed to identify nurses’ (both MTRN and RNs) perception on MTRN’s tasks and responsibilities in postnatal care. This is a descriptive cross sectional study using postal survey. All nurses who were currently working in postnatal units at five selected tertiary care hospitals in the Western Province at that time were invited to participate in the study. Accordingly, the pre evaluated self-administered questionnaire was sent to 201 nurses (53 MTRNs and 148 RNs) in the study setting. The number of valid return questionnaire was 166; response rate was 83%. Respondents rated the responsibility of four professional categories: MTRN, RN, doctor and midwife whether they are 'primarily responsible', 'responsible in absence' and 'not responsible', for each of 15 postnatal (PN) tasks which were previously identified from focus group discussions with care providers during the first phase of the study. Data were analyzed using SPSS version 20; descriptive statistics were calculated. Out of the 15 PN tasks, 13 were identified as MTRNs’ primary responsibilities by 71%-93% of respondents. The respondents also considered six (6) tasks out of 15 as primary responsibility of both MTRN and RN, seven (7) tasks as primary responsibility of MTRN, RN and doctor and the remaining two (2) tasks were identified as the primary responsibility of MTRN, RN and midwife. All 15 PN tasks overlapped with other professional categories. Overlapping tasks may create role confusion leading to conflicts among professional categories which affect the quality of care they provide, eventually, threaten the safety of the client. It is recommended that an official job description for each care provider is needed to recognize their own professional boundaries for ensuring safe, quality care delivery in Sri Lanka.

Keywords: overlapping, postnatal, responsibilities, tasks

Procedia PDF Downloads 136
661 Health Reforms in Central and Eastern European Countries: Results, Dynamics, and Outcomes Measure

Authors: Piotr Romaniuk, Krzysztof Kaczmarek, Adam Szromek

Abstract:

Background: A number of approaches to assess the performance of health system have been proposed so far. Nonetheless, they lack a consensus regarding the key components of assessment procedure and criteria of evaluation. The WHO and OECD have developed methods of assessing health system to counteract the underlying issues, but they are not free of controversies and did not manage to produce a commonly accepted consensus. The aim of the study: On the basis of WHO and OECD approaches we decided to develop own methodology to assess the performance of health systems in Central and Eastern European countries. We have applied the method to compare the effects of health systems reforms in 20 countries of the region, in order to evaluate the dynamic of changes in terms of health system outcomes.Methods: Data was collected from a 25-year time period after the fall of communism, subsetted into different post-reform stages. Datasets collected from individual countries underwent one-, two- or multi-dimensional statistical analyses, and the Synthetic Measure of health system Outcomes (SMO) was calculated, on the basis of the method of zeroed unitarization. A map of dynamics of changes over time across the region was constructed. Results: When making a comparative analysis of the tested group in terms of the average SMO value throughout the analyzed period, we noticed some differences, although the gaps between individual countries were small. The countries with the highest SMO were the Czech Republic, Estonia, Poland, Hungary and Slovenia, while the lowest was in Ukraine, Russia, Moldova, Georgia, Albania, and Armenia. Countries differ in terms of the range of SMO value changes throughout the analyzed period. The dynamics of change is high in the case of Estonia and Latvia, moderate in the case of Poland, Hungary, Czech Republic, Croatia, Russia and Moldova, and small when it comes to Belarus, Ukraine, Macedonia, Lithuania, and Georgia. This information reveals fluctuation dynamics of the measured value in time, yet it does not necessarily mean that in such a dynamic range an improvement appears in a given country. In reality, some of the countries moved from on the scale with different effects. Albania decreased the level of health system outcomes while Armenia and Georgia made progress, but lost distance to leaders in the region. On the other hand, Latvia and Estonia showed the most dynamic progress in improving the outcomes. Conclusions: Countries that have decided to implement comprehensive health reform have achieved a positive result in terms of further improvements in health system efficiency levels. Besides, a higher level of efficiency during the initial transition period generally positively determined the subsequent value of the efficiency index value, but not the dynamics of change. The paths of health system outcomes improvement are highly diverse between different countries. The instrument we propose constitutes a useful tool to evaluate the effectiveness of reform processes in post-communist countries, but more studies are needed to identify factors that may determine results obtained by individual countries, as well as to eliminate the limitations of methodology we applied.

Keywords: health system outcomes, health reforms, health system assessment, health system evaluation

Procedia PDF Downloads 274
660 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix

Authors: Natia Jalagonia, Tinatin Kuchukhidze

Abstract:

Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated

Keywords: synthesis, PMHS, membrane, electrolyte

Procedia PDF Downloads 238
659 ROCK Signaling and Radio Resistance: The Association and the Effect

Authors: P. Annapurna, Cecil Ross, Sudhir Krishna, Sweta Srivastava

Abstract:

Irradiation plays a pivotal role in cervical cancer treatment, however some tumors exhibit resistance to therapy while some exhibit relapse, due to better repair and enhanced resistance mechanisms operational in their cells. The present study aims to understand the signaling mechanism operational in resistance phenotype and in the present study we report the role of Rho GTPase associated protein kinase (ROCK) signaling in cervical carcinoma radio-resistance. ROCK signaling has been implicated in several tumor progressions and is important for DNA repair. Irradiation of spheroid cultures of SiHa cervical carcinoma derived cell line at 6Gy resulted in generation of resistant cells in vitro which had better clonogenic abilities and formed larger and more colonies, in soft agar colony formation assay, as compared to the non-irradiated cells. These cells also exhibited an enhanced motility phenotype. Cell cycle profiling showed the cells to be blocked in G2M phase with enhanced pCDC2 levels indicating onset of possible DNA repair mechanism. Notably, 3 days post-irradiation, irradiated cells showed increased ROCK2 translocation to the nucleus with enhanced protein expression as compared to the non-irradiated cells. Radio-sensitization of the resistant cells was enhanced using Y27632, an inhibitor to ROCK signaling. The treatment of resistant cells with Y27632 resulted in increased cell death upon further irradiation. This observation has been confirmed using inhibitory antibodies to ROCK1/2. Result show that both ROCK1/2 have a functional contribution in radiation resistance of cervical cancer cells derived from cell lines. Interestingly enrichment of stem like cells (Hoechst negative cells) was also observed upon irradiation and these cells were markedly sensitive to Y27632 treatment. Our results thus suggest the role of ROCK signaling in radio-resistance in cervical carcinoma. Further studies with human biopsies, mice models and mechanistic of ROCK signaling in the context of radio-resistance will clarify the role of this molecule further and allow for therapeutics development.

Keywords: cervical carcinoma, radio-resistance, ROCK signaling, cancer treatment

Procedia PDF Downloads 310
658 Analysis of the Interests, Conflicts and Power Resources in the Urban Development in the Megacity of Sao Paulo

Authors: A. G. Back

Abstract:

Urban planning is a relevant tool to address, in a systemic way, several sectoral policies capable of linking the urban agenda with the reduction of socio-environmental risks. The Sao Paulo’s master plan (2014) presents innovations capable of promoting the transition to sustainability in the urban space, with a view to its regulatory instruments related to i) promotion of density in the axes of mass transport involving the mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, its long-term implementation involves distributive conflicts and can undergo changes in different political, economic, and social contexts over time. Thus, the main objective of this paper is to identify and analyze the dynamics of conflicts of interest between social groups in the implementation of Sao Paulo’s urban development policy, particularly in relation to recent attempts at a (re) interpretation of the Master Plan guidelines, in view of the proposals for revision of the urban zoning law. In this sense, we seek to identify the demands, narratives of urban actors, including the real estate market, middle-class neighborhood associations ('not in my backyard' movements), and social housing rights movements. And we seek to analyze the power resources that these actors mobilize to influence the decision-making process, involving five categories: social capital, political access; discursive resource; media, juridical resource. The major findings of this research suggest that the interests and demands of the real estate market do not always prevail in urban regulation. After all, other actors also press for the definition of urban law with interests opposite to those of the real estate market. This is the case of associations of middle-class neighborhoods, which work to protect the characteristics of the locality, acting, in general, to prevent constructive and population densification in neighborhoods well located near the center, in São Paulo. One of the main demands of these “not in my backyard” movements is the delimitation of exclusively residential areas in the central region of the city, which is not only contrary to the interests of the real state market but also contrary to the principles of the compact city. On the other hand, social housing rights movements have also made progress in delimiting special areas of social interest in well-located and valued areas in the city dedicated to building social housing, also contrary to the interests of the real estate market. An urban development that follows the principles of the compact city must take into account the insertion of low-income populations in well-located regions; otherwise, such a development model may continue to push the less favored to the peripheries towards the preservation areas and/or risk areas.

Keywords: interest groups, Sao Paulo, sustainable urban development, urban policies implementation

Procedia PDF Downloads 102
657 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 112
656 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 52
655 Establishing a Drug Discovery Platform to Progress Compounds into the Clinic

Authors: Sheraz Gul

Abstract:

The requirements for progressing a compound to clinical trials is well established and relies on the results from in-vitro and in-vivo animal tests to indicate that it is likely to be safe and efficacious when testing in humans. The typical data package required will include demonstrating compound safety, toxicity, bioavailability, pharmacodynamics (potential effects of the compound on body systems) and pharmacokinetics (how the compound is potentially absorbed, distributed, metabolised and eliminated after dosing in humans). If the desired criteria are met and the compound meets the clinical Candidate criteria and is deemed worthy of further development, a submission to regulatory bodies such as the US Food & Drug Administration for an exploratory Investigational New Drug Study can be made. The purpose of this study is to collect data to establish that the compound will not expose humans to unreasonable risks when used in limited, early-stage clinical studies in patients or normal volunteer subjects (Phase I). These studies are also designed to determine the metabolism and pharmacologic actions of the drug in humans, the side effects associated with increasing doses, and, if possible, to gain early evidence on their effectiveness. In order to reach the above goals, we have developed a pre-clinical high throughput Absorption, Distribution, Metabolism and Excretion–Toxicity (ADME–Toxicity) panel of assays to identify compounds that are likely to meet the Lead and Candidate compound acceptance criteria. This panel includes solubility studies in a range of biological fluids, cell viability studies in cancer and primary cell-lines, mitochondrial toxicity, off-target effects (across the kinase, protease, histone deacetylase, phosphodiesterase and GPCR protein families), CYP450 inhibition (5 different CYP450 enzymes), CYP450 induction, cardio-toxicity (hERG) and gene-toxicity. This panel of assays has been applied to multiple compound series developed in a number of projects delivering Lead and clinical Candidates and examples from these will be presented.

Keywords: absorption, distribution, metabolism and excretion–toxicity , drug discovery, food and drug administration , pharmacodynamics

Procedia PDF Downloads 159
654 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.

Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number

Procedia PDF Downloads 159
653 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 309
652 Quantitative Analysis of Three Sustainability Pillars for Water Tradeoff Projects in Amazon

Authors: Taha Anjamrooz, Sareh Rajabi, Hasan Mahmmud, Ghassan Abulebdeh

Abstract:

Water availability, as well as water demand, are not uniformly distributed in time and space. Numerous extra-large water diversion projects are launched in Amazon to alleviate water scarcities. This research utilizes statistical analysis to examine the temporal and spatial features of 40 extra-large water diversion projects in Amazon. Using a network analysis method, the correlation between seven major basins is measured, while the impact analysis method is employed to explore the associated economic, environmental, and social impacts. The study unearths that the development of water diversion in Amazon has witnessed four stages, from a preliminary or initial period to a phase of rapid development. It is observed that the length of water diversion channels and the quantity of water transferred have amplified significantly in the past five decades. As of 2015, in Amazon, more than 75 billion m³ of water was transferred amidst 12,000 km long channels. These projects extend over half of the Amazon Area. The River Basin E is currently the most significant source of transferred water. Through inter-basin water diversions, Amazon gains the opportunity to enhance the Gross Domestic Product (GDP) by 5%. Nevertheless, the construction costs exceed 70 billion US dollars, which is higher than any other country. The average cost of transferred water per unit has amplified with time and scale but reduced from western to eastern Amazon. Additionally, annual total energy consumption for pumping exceeded 40 billion kilowatt-hours, while the associated greenhouse gas emissions are assessed to be 35 million tons. Noteworthy to comprehend that ecological problems initiated by water diversion influence the River Basin B and River Basin D. Due to water diversion, more than 350 thousand individuals have been relocated, away from their homes. In order to enhance water diversion sustainability, four categories of innovative measures are provided for decision-makers: development of water tradeoff projects strategies, improvement of integrated water resource management, the formation of water-saving inducements, and pricing approach, and application of ex-post assessment.

Keywords: sustainability, water trade-off projects, environment, Amazon

Procedia PDF Downloads 116
651 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 126
650 The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph

Authors: Beth Taylor, Kojima Mituaki, Atsushi Senda, Koji Morishita, Yasuhiro Otomo

Abstract:

Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients.

Keywords: exosomes, inflammation, intestinal ischaemia, mesenteric lymph, vagal stimulation

Procedia PDF Downloads 118
649 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 272
648 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients

Authors: Lise Paesen, Marielle Leijten

Abstract:

People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.

Keywords: Alzheimer's disease, experimental design, language decline, writing process

Procedia PDF Downloads 260