Search results for: velocity prediction program
1898 Teacher Collaboration Impact on Bilingual Students’ Oral Communication Skills in Inclusive Contexts
Authors: Diana González, Marta Gràcia, Ana Luisa Adam-Alcocer
Abstract:
Incorporating digital tools into educational practices represents a valuable approach for enriching the quality of teachers' educational practices in oral competence and fostering improvements in student learning outcomes. This study aims to promote a collaborative and culturally sensitive approach to professional development between teachers and a speech therapist to enhance their self-awareness and reflection on high-quality educational practices that integrate school components to strengthen children’s oral communication and pragmatic skills. The study involved five bilingual teachers fluent in both English and Spanish, with three specializing in special education and two in general education. It focused on Spanish-English bilingual students, aged 3-6, who were experiencing speech delays or disorders in a New York City public school, with the collaboration of a speech therapist. Using EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context - Decision Support System), teachers conducted self-assessments of their teaching practices, reflect and make-decisions throughout six classes from March to June, focusing on students' communicative competence across various activities. Concurrently, the speech therapist observed and evaluated six classes per teacher using EVALOE-DSS during the same period. Additionally, professional development meetings were held monthly between the speech therapist and teachers, centering on discussing classroom interactions, instructional strategies, and the progress of both teachers and students in their classes. Findings highlight the digital tool EVALOE-DSS's value in analyzing communication patterns and trends among bilingual children in inclusive settings. It helps in identifying improvement areas through teacher and speech therapist collaboration. After self-reflection meetings, teachers demonstrated increased awareness of student needs in oral language and pragmatic skills. They also exhibited enhanced utilization of strategies outlined in EVALOE-DSS, such as actively guiding and orienting students during oral language activities, promoting student-initiated communicative interactions, teaching students how to seek and provide information, and managing turn-taking to ensure inclusive participation. Teachers participating in the professional development program have shown positive progress in assessing their classes across all dimensions of the training tool, including instructional design, teacher conversation management, pupil conversation management, communicative functions, teacher strategies, and pupil communication functions. This includes aspects related to both teacher actions and child actions, particularly in child language development. This progress underscores the effectiveness of individual reflection (conducted weekly or biweekly using EVALOE-DSS) as well as collaborative reflection among teachers and the speech therapist during meetings. The EVALOE-SSD has proven effective in supporting teachers' self-reflection, decision-making, and classroom changes, leading to improved development of students' oral language and pragmatic skills. It has facilitated culturally sensitive evaluations of communication among bilingual children, cultivating collaboration between teachers and speech therapist to identify areas of growth. Participants in the professional development program demonstrated substantial progress across all dimensions assessed by EVALOE-DSS. This included improved management of pupil communication functions, implementation of effective teaching strategies, and better classroom dynamics. Regular reflection sessions using EVALOE-SSD supported continuous improvement in instructional practices, highlighting its role in fostering reflective teaching and enriching student learning experiences. Overall, EVALOE-DSS has proven invaluable for enhancing teaching effectiveness and promoting meaningful student interactions in diverse educational settings.Keywords: bilingual students, collaboration, culturally sensitive, oral communication skills, self-reflection
Procedia PDF Downloads 381897 Survey of Epidemiology and Mechanisms of Badminton Injury Using Medical Check-Up and Questionnaire of School Age Badminton Players
Authors: Xiao Zhou, Kazuhiro Imai, Xiaoxuan Liu
Abstract:
Badminton is one type of racket sports that requires repetitive overhead motion, with the shoulder in abduction/external rotation and requires players to perform jumps, lunges, and quick directional changes. These characteristics could be stressful for body regions that may cause badminton injuries. Regarding racket players including badminton players, there have not been any studies that have utilized medical check-up to evaluate epidemiology and mechanism of injuries. In addition, epidemiology of badminton injury in school age badminton players is unknown. The first purpose of this study was to investigate the badminton injuries, physical fitness parameters, and intensity of shoulder pain using medical check-up so that the mechanisms of shoulder injuries might be revealed. The second purpose of this study was to survey the distribution of badminton injuries in elementary school age players so that injury prevention can be implemented as early as possible. The results of this study revealed that shoulder pain occurred in all players, and present shoulder pain players had smaller weight, greater shoulder external rotation (ER) gain, significantly thinner circumference of upper limbs and greater trunk extension. Identifying players with specific of these factors may enhance the prevention of badminton injury. This study also shows that there are high incidences of knee, ankle, plantar, and shoulder injury or pain in elementary school age badminton players. Injury prevention program might be implemented for elementary school age players.Keywords: badminton injury, epidemiology, medical check-up, school age players
Procedia PDF Downloads 1391896 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 641895 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM
Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari
Abstract:
Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine
Procedia PDF Downloads 2051894 Dynamics of Antioxidant and Anti-Radical Activity of the Extracts of Certain Plants of Kazakhstan
Authors: A. Kazbekova, A. Kudaibergenov, G. Atazhanova, S. Adekenov
Abstract:
In recent years, it achieved some progress such a direction as to study the possibility of correlation between different types of biological activity. In particular, in our work, we consider questions such as: the impact of the qualitative composition of total substances in the example of plant extracts on antioxidant and antiradical activity, the presents of correlation between these types of activity, etc. It is known that there is a relationship between the values of optical density of working solutions of extracts and corresponding bioactivity in vitro, in particular, the antioxidant and hepatoprotective effects. In this study, we have identified that among some studied species of wormwood (Artemisia viridis Wild, Artemisia jacutica Drob, Artemisia annua L, Artemisia siversiana Wild, Artemisia adamsii Bess, Artemisia tianschanica, Artemisia obtusiloba Ledeb., Artemisia heptopotamica), as well as extracts of Inula caspica, Аjania tenuifolia, Abies sibirica, Galatella songorica, Mentha asiatica and Thymus mugodzharicus it was identified that the highest content of polyphenol compounds is in Thymus mugodzharicus. At the same time, we determined the antioxidant and antiradical activity, which was the highest for the Thymus mugodzharicus. Butylhydroxyanisole and ascorbic acid were used as comparison substances. Also, it was established that antioxidant and anti-radical activities depend on the concentration of the of all investigated samples. Based on obtained data, we believe that the extract of Thymus mugodzharicus can be recommended for further study on the antioxidant and antiradical activity in vivo, as well as the opportunity of this sample to demonstrate hepatoprotective effect. The study was sponsored by SANTO academic program.Keywords: in vitro, in vivo, antioxidant, hepatoprotective effect
Procedia PDF Downloads 3171893 Exploring the Correlation between Students' Performance in Educational Statistics and Research Methods in Education: The Influence of Undergraduate Programs
Authors: Justice Dadzie, Stacy H. Surman, Ruth K. Annan-Brew, Ifesinachi J. Ezugwu, Evans Addison
Abstract:
This study aimed to explore the correlation between students' performance in educational statistics and research methods in education, as well as investigate potential differences in performance based on their undergraduate programs. A cross-sectional design was employed, and data was collected from 170 students enrolled in master of philosophy programs in the department of education and psychology. The correlation analysis revealed a strong positive correlation between students' performance in intermediate statistics in education and research methods in education. This indicates a close relationship between the two domains. The MANOVA analysis showed no significant differences in the linear combination of intermediate statistics in education and research methods in education scores across the different undergraduate programs. The tests of between-subjects effects further confirmed that the student's performance in intermediate statistics in education and research methods in education did not differ significantly across the different undergraduate programs. These findings contribute to the existing literature by providing insights into the correlation between educational statistics and research methods, and the influence of undergraduate program backgrounds on students' performance in these domains. The strong positive correlation between intermediate statistics and research methods highlights the importance of a solid foundation in statistics for understanding and applying research methods. Moreover, the consistent relationship across different academic backgrounds emphasizes the need for targeted interventions and support systems to enhance graduate students' competencies in these critical areas.Keywords: educational statistics, research methods, undergraduate programs, students performance
Procedia PDF Downloads 501892 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)
Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini
Abstract:
Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria
Procedia PDF Downloads 1041891 Teaching Buddhist Meditation: An Investigation into Self-Learning Methods
Authors: Petcharat Lovichakorntikul, John Walsh
Abstract:
Meditation is in the process of becoming a globalized practice and its benefits have been widely acknowledged. The first wave of internationalized meditation techniques and practices was represented by Chan and Zen Buddhism and a new wave of practice has arisen in Thailand as part of the Phra Dhammakaya temple movement. This form of meditation is intended to be simple and straightforward so that it can easily be taught to people unfamiliar with the basic procedures and philosophy. This has made Phra Dhammakaya an important means of outreach to the international community. One notable aspect is to encourage adults to become like children to perform it – that is, to return to a naïve state prior to the adoption of ideology as a means of understanding the world. It is said that the Lord Buddha achieved the point of awakening at the age of seven and Phra Dhammakaya has a program to teach meditation to both children and adults. This brings about the research question of how practitioners respond to the practice of meditation and how should they be taught? If a careful understanding of how children behave can be achieved, then it will help in teaching adults how to become like children (albeit idealized children) in their approach to meditation. This paper reports on action research in this regard. Personal interviews and focus groups are held with a view to understanding self-learning methods with respect to Buddhist meditation and understanding and appreciation of the practices involved. The findings are considered in the context of existing knowledge about different learning techniques among people of different ages. The implications for pedagogical practice are discussed and learning methods are outlined.Keywords: Buddhist meditation, Dhammakaya, meditation technique, pedagogy, self-learning
Procedia PDF Downloads 4801890 Entrepreneurship Skills Acquisition through Education: Impact of the Nurturance of Knowledge, Skills, and Attitude on New Venture Creation
Authors: Satya Ranjan Acharya, Yamini Chandra
Abstract:
Entrepreneurship through higher education has taken a paradigm shift from traditional classroom lecture series method to a modern approach, which lay emphasis on nurturing competencies, enhancing knowledge, skills, attitudes/abilities (KSA), which has positive impact on the development of core capabilities. The present paper was focused on the analysis of entrepreneurship education as a pedagogical intervention for the post-graduate program offered at the Entrepreneurship Development Institute of India, Gujarat, India. The study is focused on a model with special emphasis on developing KSA and its effect on nurturing entrepreneurial spirit within students. The findings represent demographic and thematic assessment of the implemented pedagogical model with an outcome of students choosing a career in new venture creation or growth/diversification of family owned businesses. This research will be helpful for academicians, research scholars, potential entrepreneurs, ecosystem enablers and students to infer the effectiveness of nurturing entrepreneurial skills and bringing more changes in personal attitudes by the way of enhancing the knowledge and skills required for the execution of an entrepreneurial career. This research is original in nature as it provides an in-depth insight into an implemented model of curriculum, focused on the development and nurturance of basic skills and its impact on the career choice of students.Keywords: attitude, entrepreneurship education, knowledge, new venture creation, pedagogical intervention, skills
Procedia PDF Downloads 1931889 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 1511888 An Engineered Epidemic: Big Pharma's Role in the Opioid Crisis
Authors: Donna L. Roberts
Abstract:
2019 marked 23 years since Purdue Pharma launched its flagship drug, OxyContin, that unleashed an unprecedented epidemic touching both celebrities and common citizens, metropolitan, suburbia and rural areas and all levels of socioeconomic status. From rural Appalachia to East LA individuals, families and communities have been devastated by a trajectory of addiction that often began with the legitimate prescription of a pain killer for anything from a tooth extraction to a sports injury to recovery from surgery or chronic arthritis. Far from being a serendipitous progression of events, the proliferation of this new breed of 'miracle drug' was instead a carefully crafted marketing program aimed at both the medical community and common citizens. This research represents and in-depth investigation of the evolution of the marketing, distribution and promotion of prescription opioids by pharmaceutical companies and its relationship to the propagation of the opioid crisis. Specifically, key components of Purdue Pharma’s aggressive marketing campaign, including its bonus system and sales incentives, were analyzed in the context of the sociopolitical environment that essential created the proverbial 'perfect storm' for the changing manner in which pain is treated in the U.S. The analyses of these series of events clearly indicate their role in first, the increase in prescription of opioids for non-terminal pain relief and subsequently, the incidence of related addiction, overdose, and death. Through this examination of the conditions that facilitated and maintained this drug crisis, perhaps we can begin to chart a course toward its resolution.Keywords: addiction, opioid, opioid crisis, Purdue Pharma
Procedia PDF Downloads 1241887 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model
Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik
Abstract:
In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.Keywords: growth management, land use externalities, land value, spatial panel dynamic
Procedia PDF Downloads 2571886 Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya
Authors: Osama Sassi, Manal Eltorki, Iftikhar Ahmad
Abstract:
Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection.Keywords: corrosion mitigation on gas transmission pipelines, pipeline integrity management, corrosion management of gas pipelines, prevention and inspection of corrosion
Procedia PDF Downloads 801885 Access to Apprenticeships and the Impact of Individual and School Level Characteristics
Authors: Marianne Dæhlen
Abstract:
Periods of apprenticeships are characteristic of many vocational educational training (VET) systems. In many countries, becoming a skilled worker implies that the journey starts with an application for apprenticeships at a company or another relevant training establishment. In Norway, where this study is conducted, VET students start their journey with two years of school-based training before applying for two years of apprenticeship. Previous research has shown that access to apprenticeships differs by family background (socio-economic, immigrant, etc.), gender, school grades, and region. The question we raise in this study is whether the status, reputation, or position of the vocational school contributes to VET students’ access to apprenticeships. Data and methods: Register data containing information about schools’ and VET students’ characteristics will be analyzed in multilevel regression analyses. At the school level, the data will contain information on school size, shares of immigrants and/or share of male/female students, and grade requirements for admission. At the VET-student level, the register contains information on e.g., gender, school grades, educational program/trade, obtaining apprenticeship or not. The data set comprises about 3,000 students. Results: The register data is expected to be received in November 2024 and consequently, any results are not present at the point of this call. The planned article is part of a larger research project granted from the Norwegian Research Council and will, accordingly to the plan, start up in December 2024.Keywords: apprenticeships, VET-students’ characteristics, vocational schools, quantitative methods
Procedia PDF Downloads 141884 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield
Authors: Sonia Barbouchi, Meriem Samcha
Abstract:
Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.Keywords: compatibility study, produced water, scaling, water injection
Procedia PDF Downloads 1691883 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.Keywords: agglomerate, blast furnace, permeability, softening-melting
Procedia PDF Downloads 2531882 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution
Authors: Zory Marantz
Abstract:
Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.Keywords: education, HyFlex, technology, urban, commuter, pedagogy
Procedia PDF Downloads 951881 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality
Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy
Abstract:
Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.Keywords: wilms’ tumour, nephroblastoma, urology, survival
Procedia PDF Downloads 681880 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 2801879 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake
Authors: Ahmed T. Farid, Khaled Z. Soliman
Abstract:
Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.Keywords: acceleration, backfill, earthquake, soil, PGA
Procedia PDF Downloads 3811878 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur
Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh
Abstract:
Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.Keywords: hanging, channelling, blast furnace, coke
Procedia PDF Downloads 1971877 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning
Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic
Abstract:
Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method
Procedia PDF Downloads 2521876 The 5S Responses of Obese Teenagers in Verbal Bullying
Authors: Alpha Bolinao, Francine Rose De Castro, Jessie Kate Lumba, Raztine Mae Paeste, Hannah Grace Tosio
Abstract:
The present study aimed to know the role of verbal bullying in the lives of obese teenagers exposed to it. The study employed a qualitative design specifically the phenomenological approach that focuses on the obese teenagers’ verbal bullying experiences. The study also used the social constructivism approach wherein it described the obese teenagers’ verbal bullying experiences as they interact with the social world. Through purposive and referral sampling technique, the researchers were able to choose twelve (12) respondents from different schools around the City of Manila, enrolled in the School Year 2015-2016, ages 16-21 years old, has experienced verbal bullying for the last ten (10) years and with the Body Mass Index (BMI) of equal to or greater than 30. Upon the consent of the respondents, ethical considerations were ensured. In-depth one (1) hour interviews were guided by the researchers’ aide memoir. The recorded interviews were transcribed into a field text and the responses were thoroughly analyzed through Thematic Analysis and Kelly’s Repertory Grid. It was found that the role of verbal bullying in the lives of obese teenagers exposed to it is a process and is best described through a syringe, or the 5S Responses of Obese Teenagers in Bullying, with five conceptual themes which also signify the experiences and the process that obese teenagers have gone through after experiencing verbal bullying. The themes conceptualized were: Suffering, self-doubt, suppression, self-acceptance and sanguineness. This paper may serve as a basis for a counseling program to help the obese teenagers cope with their bullying experiences.Keywords: obesity, obese teenagers, bullying, experiences
Procedia PDF Downloads 3591875 Examining Predictive Coding in the Hierarchy of Visual Perception in the Autism Spectrum Using Fast Periodic Visual Stimulation
Authors: Min L. Stewart, Patrick Johnston
Abstract:
Predictive coding has been proposed as a general explanatory framework for understanding the neural mechanisms of perception. As such, an underweighting of perceptual priors has been hypothesised to underpin a range of differences in inferential and sensory processing in autism spectrum disorders. However, empirical evidence to support this has not been well established. The present study uses an electroencephalography paradigm involving changes of facial identity and person category (actors etc.) to explore how levels of autistic traits (AT) affect predictive coding at multiple stages in the visual processing hierarchy. The study uses a rapid serial presentation of faces, with hierarchically structured sequences involving both periodic and aperiodic repetitions of different stimulus attributes (i.e., person identity and person category) in order to induce contextual expectations relating to these attributes. It investigates two main predictions: (1) significantly larger and late neural responses to change of expected visual sequences in high-relative to low-AT, and (2) significantly reduced neural responses to violations of contextually induced expectation in high- relative to low-AT. Preliminary frequency analysis data comparing high and low-AT show greater and later event-related-potentials (ERPs) in occipitotemporal areas and prefrontal areas in high-AT than in low-AT for periodic changes of facial identity and person category but smaller ERPs over the same areas in response to aperiodic changes of identity and category. The research advances our understanding of how abnormalities in predictive coding might underpin aberrant perceptual experience in autism spectrum. This is the first stage of a research project that will inform clinical practitioners in developing better diagnostic tests and interventions for people with autism.Keywords: hierarchical visual processing, face processing, perceptual hierarchy, prediction error, predictive coding
Procedia PDF Downloads 1111874 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT
Procedia PDF Downloads 4581873 Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices
Authors: Hilal Uslu, Salih Eroglu, Betul Ozkan, Ozcan Bulantekin, Alper Kuscu
Abstract:
In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively.Keywords: mathematical modelling, microwave drying, strawberry, ultrasound
Procedia PDF Downloads 1541872 Sustainability of Vernacular Architecture in Zegalli Houses in Northern Iran with Emphasis on Their Seismic Behavior
Authors: Mona Zaryoun, Mahmood Hosseini, Seyed Mohammad Hassan Khalkhali, Haniyeh Okhovat
Abstract:
Zegalli houses in Guilan province, northern Iran, are a type of vernacular houses which their foundation, skeleton and walls all have been made of wood. The only houses which could survive the major Manjil-Rudbar earthquake of 1990 with a magnitude of 7.2 were these houses. Regarding this fact, some researchers started thinking of this type of foundations used in these houses to benefit from rocking-wise behavior. On the one hand, the relatively light weight of the houses, have helped these houses to withstand well against seismic excitations. In this paper at first a brief description of Zegalli houses and their architectural features, with emphasis on their foundation is presented. in the next stage foundation of one of these houses is modeled as a sample by a using a computer program, which has been developed in MATLAB environment, and by using the horizontal and vertical accelerograms of a set of selected site compatible earthquakes, a series of time history analysis (THA) are carried out to investigate the behavior of this type of houses against earthquake. Based on numerical results of THA it can be said that even without no sliding at the foundation timbers, only due to the rocking which occurs in various levels of the foundation the seismic response of the house is significantly reduced., which results in their stability subjected to earthquakes with peak ground acceleration of around 0.35g. Therefore, it can be recommended the Zegalli houses are considered as sustainable Iranian vernacular architecture, and it can be recommended that the use of these houses and their architecture and their structural merits are reconsidered by architects as well as civil and structural engineers.Keywords: MATLAB software, rocking behavior, time history analysis, Zegalli houses
Procedia PDF Downloads 2881871 The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients
Authors: Rebar Mohammed Hussein
Abstract:
Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties.Keywords: ERAS protocols, high-risk surgical patients, anesthesia management, recovery
Procedia PDF Downloads 281870 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation
Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um
Abstract:
In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube
Procedia PDF Downloads 2011869 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 117