Search results for: Parametric learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8024

Search results for: Parametric learning

2504 Resilience Compendium: Strategies to Reduce Communities' Risk to Disasters

Authors: Caroline Spencer, Suzanne Cross, Dudley McArdle, Frank Archer

Abstract:

Objectives: The evolution of the Victorian Compendium of Community-Based Resilience Building Case Studies and its capacity to help communities implement activities that encourage adaptation to disaster risk reduction and promote community resilience in rural and urban locations provide this paper's objectives. Background: Between 2012 and 2019, community groups presented at the Monash University Disaster Resilience Initiative (MUDRI) 'Advancing Community Resilience Annual Forums', provided opportunities for communities to impart local resilience activities, how to solve challenges and share unforeseen learning and be considered for inclusion in the Compendium. A key tenet of the Compendium encourages compiling and sharing of grass-roots resilience building activities to help communities before, during, and after unexpected emergencies. The online Compendium provides free access for anyone wanting to help communities build expertise, reduce program duplication, and save valuable community resources. Identifying case study features across the emergency phases and analyzing critical success factors helps communities understand what worked and what did not work to achieve success and avoid known barriers. International exemplars inform the Compendium, which represents an Australian first and enhances Victorian community resilience initiatives. Emergency Management Victoria provided seed funding for the Compendium. MUDRI matched this support and continues to fund the project. A joint Steering Committee with broad-based user input and Human ethics approval guides its continued growth. Methods: A thematic analysis of the Compendium identified case study features, including critical success factors. Results: The Compendium comprises 38 case studies, representing all eight Victorian regions. Case studies addressed emergency phases, before (29), during (7), and after (17) events. Case studies addressed all hazards (23), bushfires (11), heat (2), fire safety (1), and house fires (1). Twenty case studies used a framework. Thirty received funding, of which nine received less than $20,000 and five received more than $100,000. Twenty-nine addressed a whole of community perspective. Case studies revealed unique and valuable learning in diverse settings. Critical success factors included strong governance; board support, leadership, and trust; partnerships; commitment, adaptability, and stamina; community-led initiatives. Other success factors included a paid facilitator and local government support; external funding, and celebrating success. Anecdotally, we are aware that community groups reference Compendium and that its value adds to community resilience planning. Discussion: The Compendium offers an innovative contribution to resilience research and practice. It augments the seven resilience characteristics to strengthen and encourage communities as outlined in the Statewide Community Resilience Framework for Emergency Management; brings together people from across sectors to deliver distinct, yet connected actions to strengthen resilience as a part of the Rockefeller funded Resilient Melbourne Strategy, and supports communities and economies to be resilient when a shock occurs as identified in the recently published Australian National Disaster Risk Reduction Framework. Each case study offers learning about connecting with community and how to increase their resilience to disaster risks and to keep their community safe from unexpected emergencies. Conclusion: The Compendium enables diverse communities to adopt or adapt proven resilience activities, thereby preserving valuable community resources and offers the opportunity to extend to a national or international Compendium.

Keywords: case study, community, compendium, disaster risk reduction, resilience

Procedia PDF Downloads 125
2503 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism

Authors: Maggie Mosher, Adam Carreon, Sean Smith

Abstract:

A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.

Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality

Procedia PDF Downloads 113
2502 Redefining Doctors' Role in Terms of Medical Errors and Consumer Protection Act to Be in Line with Medical Ethics

Authors: Manushi Srivastava

Abstract:

Introduction: Doctor’s role, and relation with respect to patient care is at the core of medical ethics. The rapid pace of medical advances along with increasing consumer awareness about their rights and hike in cost of effective health care demand a robust, transparent and patient-friendly medical care system. However, doctors’ role performance is still in the frame of activity-passivity model of Doctor-Patient Relationship (DPR) where doctors act as parent and use to instruct their patients, without their consensus that is not going to help in the 21st century. Thus the current situation is a new challenge for traditional doctor-patient relationship after the introduction of Consumer Protection Act (CPA) in medical profession and the same is evidenced by increasing cases of medical litigation. To strengthen this system of medical services, the doctor plays a vital role, and the same should be reviewed in the present context. Objective: To understand the opinion of consultants regarding medical negligence and effect of Consumer Protection Act in terms of current practices of patient care. Method: This is a cross-sectional study in which both quantitative and qualitative methods are applied. Total 69 consultants were selected from multi-specialty hospitals of densely populated Varanasi city catering a population of about 1.8 million. Two-stage sampling was used for selection of respondents. At the first stage, selection of major wards (Medicine, Surgery, Ophthalmology, Gynaecology, Orthopaedics, and Paediatrics) was carried out, which are more susceptible to medical negligence. At the second stage, selection of consultants from the respective wards was carried out. In-depth Interviews were conducted with the help of semi-structured schedule. Two case studies of medical negligence were also carried out as part of the qualitative study. Analysis: Data were analyzed with the help of SPSS software (21.0 trial version). Semi-structured research tool was used to know consultant’s opinion about the pattern of medical negligence cases, litigations and claims made by patient community and inclusion of government medical services in CPA. Statistical analysis was done to describe data, and non-parametric test was used to observe the association between the variables. Analysis of Verbatim was used in case-study. Findings and Conclusion: Majority (92.8%) of consultants felt changes in the behaviour of community (patient) after implementation of CPA, as it had increased awareness about their rights. Less than half of the consultants opined that Medical Negligence is an Unintentional act of doctors and generally occurs due to communication gap and behavioural problem between doctor and patients. Experienced consultants ( > 10 years) pointed out that unethical practice by doctors and mal-intention of patient to harass doctors were additional reasons of Medical Negligence. In-depth interview revealed that now patients’ community expects more transparency and hence they demand cafeteria approach in diagnosis and management of cases. Thus as study results, we propose ‘Agreement Model’ of DPR to re-ensure ethical practice in medical profession.

Keywords: doctors, communication, consumer protection act (CPA), medical error

Procedia PDF Downloads 164
2501 Effects of Visual Agnosia in Children’s Linguistic Abilities: Psychoneurolinguistic Approach

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Objective: The aim of the study is to examine the relationship between visual agnosia and learning delay in Yemeni children. Method: A total of 80 subjects (experimental group= 60, 30 males and 30 females and control group= 20, 10 males and 10 females) in two institutions (old and new). The age of all subjects at hand ranges between 6- and 12 years old. Pre and post-tests were administered. Results: Outline results show severe effects on the performance of the children due to visual agnosia this effect was benign in the group that received the treatment, and this can be clearly seen in their results in the post-test compared to the other group that did not receive the treatment and outcomes in general can be better understood in light of the control group.

Keywords: visual, agnosia, linguistics, abilities, effects, psychoneurolinguistics

Procedia PDF Downloads 49
2500 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts

Authors: Hyung Jun Ahn

Abstract:

With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.

Keywords: blog, social media, text analysis, psycholinguistics

Procedia PDF Downloads 282
2499 Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh

Authors: MD Mashiur Rahman, Muhammad Arshadul Haque

Abstract:

Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems.

Keywords: conservation agriculture and tillage, energy use efficiency, life cycle GHG, Bangladesh

Procedia PDF Downloads 104
2498 A Review: Artificial Intelligence (AI) Driven User Access Management and Identity Governance

Authors: Rupan Preet Kaur

Abstract:

This article reviewed the potential of artificial intelligence in the field of identity and access management (IAM) and identity governance and administration (IGA), the most critical pillars of any organization. The power of leveraging AI in the most complex and huge user base environment was outlined by simplifying and streamlining the user access approvals and re-certifications without any impact on the user productivity and at the same time strengthening the overall compliance of IAM landscape. Certain challenges encountered in the current state were detailed where majority of organizations are still lacking maturity in the data integrity aspect. Finally, this paper concluded that within the realm of possibility, users and application owners can reap the benefits of unified approach provided by AI to improve the user experience, improve overall efficiency, and strengthen the risk posture.

Keywords: artificial intelligence, machine learning, user access review, access approval

Procedia PDF Downloads 98
2497 The Report of Co-Construction into a Trans-National Education Teaching Team

Authors: Juliette MacDonald, Jun Li, Wenji Xiang, Mingwei Zhao

Abstract:

Shanghai International College of Fashion and Innovation (SCF) was created as a result of a collaborative partnership agreement between the University of Edinburgh and Donghua University. The College provides two programmes: Fashion Innovation and Fashion Interior Design and the overarching curriculum has the intention of developing innovation and creativity within an international learning, teaching, knowledge exchange and research context. The research problem presented here focuses on the multi-national/cultural faculty in the team, the challenges arising from difficulties in communication and the associated limitations of management frameworks. The teaching faculty at SCF are drawn from China, Finland, Korea, Singapore and the UK with input from Flying Faculty from Fashion and Interior Design, Edinburgh College of Art (ECA), for 5 weeks each semester. Rather than fully replicating the administrative and pedagogical style of one or other of the institutions within this joint partnership the aim from the outset was to create a third way which acknowledges the quality assurance requirements of both Donghua and Edinburgh, the academic and technical needs of the students and provides relevant development and support for all the SCF-based staff and Flying Academics. It has been well acknowledged by those who are involved in teaching across cultures that there is often a culture shock associated with transnational education but that the experience of being involved in the delivery of a curriculum at a Joint Institution can also be very rewarding for staff and students. It became clear at SCF that if a third way might be achieved which encourages innovative approaches to fashion education whilst balancing the expectations of Chinese and western concepts of education and the aims of two institutions, then it was going to be necessary to construct a framework which developed close working relationships for the entire teaching team, so not only between academics and students but also between technicians and administrators at ECA and SCF. The attempts at co-construction and integration are built on the sharing of cultural and educational experiences and knowledge as well as provision of opportunities for reflection on the pedagogical purpose of the curriculum and its delivery. Methods on evaluating the effectiveness of these aims include a series of surveys and interviews and analysis of data drawn from teaching projects delivered to the students along with graduate successes from the last five years, since SCF first opened its doors. This paper will provide examples of best practice developed by SCF which have helped guide the faculty and embed common core values and aims of co-construction regulations and management, whilst building a pro-active TNE (Trans-National Education) team which enhances the learning experience for staff and students alike.

Keywords: cultural co-construction, educational team management, multi-cultural challenges, TNE integration for teaching teams

Procedia PDF Downloads 125
2496 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 25
2495 The Chinese Inland-Coastal Inequality: The Role of Human Capital and the Crisis Watershed

Authors: Iacopo Odoardi, Emanuele Felice, Dario D'Ingiullo

Abstract:

We investigate the role of human capital in the Chinese inland-coastal inequality and how the consequences of the 2007-2008 crisis may induce China to refocus its development path on human capital. We compare panel data analyses for two periods for the richer/coastal and the relatively poor/inland provinces. Considering the rapid evolution of the Chinese economy and the changes forced by the international crisis, we wonder if these events can lead to rethinking local development paths, fostering greater attention on the diffusion of higher education. We expect that the consequences on human capital may, in turn, have consequences on the inland/coastal dualism. The focus on human capital is due to the fact that the growing differences between inland and coastal areas can be explained by the different local endowments. In this respect, human capital may play a major role and should be thoroughly investigated. To assess the extent to which human capital has an effect on economic growth, we consider a fixed-effects model where differences among the provinces are considered parametric shifts in the regression equation. Data refer to the 31 Chinese provinces for the periods 1998-2008 and 2009-2017. Our dependent variable is the annual variation of the provincial gross domestic product (GDP) at the prices of the previous year. Among our regressors, we include two proxies of advanced human capital and other known factors affecting economic development. We are aware of the problem of conceptual endogeneity of variables related to human capital with respect to GDP; we adopt an instrumental variable approach (two-stage least squares) to avoid inconsistent estimates. Our results suggest that the economic strengths that influenced the Chinese take-off and the dualism are confirmed in the first period. These results gain relevance in comparison with the second period. An evolution in local economic endowments is taking place: first, although human capital can have a positive effect on all provinces after the crisis, not all types of advanced education have a direct economic effect; second, the development path of the inland area is changing, with an evolution towards more productive sectors which can favor higher returns to human capital. New strengths (e.g., advanced education, transport infrastructures) could be useful to foster development paths of inland-coastal desirable convergence, especially by favoring the poorer provinces. Our findings suggest that in all provinces, human capital can be useful to promote convergence in growth paths, even if investments in tertiary education seem to have a negative role, most likely due to the inability to exploit the skills of highly educated workers. Furthermore, we observe important changes in the economic characteristics of the less developed internal provinces. These findings suggest an evolution towards more productive economic sectors, a greater ability to exploit both investments in fixed capital and the available infrastructures. All these aspects, if connected with the improvement in the returns to human capital (at least at the secondary level), lead us to assume a better reaction (i.e., resilience) of the less developed provinces to the crisis effects.

Keywords: human capital, inland-coastal inequality, Great Recession, China

Procedia PDF Downloads 208
2494 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 146
2493 Bilingual Books in British Sign Language and English: The Development of E-Book

Authors: Katherine O'Grady-Bray

Abstract:

For some deaf children, reading books can be a challenge. Frank Barnes School (FBS) provides guided reading time with Teachers of the Deaf, in which they read books with deaf children using a bilingual approach. The vocabulary and context of the story is explained to deaf children in BSL so they develop skills bridging English and BSL languages. However, the success of this practice is only achieved if the person is fluent in both languages. FBS piloted a scheme to convert an Oxford Reading Tree (ORT) book into an e-book that can be read using tablets. Deaf readers at FBS have access to both languages (BSL and English) during lessons and outside the classroom. The pupils receive guided reading sessions with a Teacher of the Deaf every morning, these one to one sessions give pupils the opportunity to learn how to bridge both languages e.g. how to translate English to BSL and vice versa. Generally, due to our pupils’ lack of access to incidental learning, gaining new information about the world around them is limited. This highlights the importance of quality time to scaffold their language development. In some cases, there is a shortfall of parental support at home due to poor communication skills or an unawareness of how to interact with deaf children. Some families have a limited knowledge of sign language or simply don’t have the required learning environment and strategies needed for language development with deaf children. As the majority of our pupils’ preferred language is BSL we use that to teach reading and writing English. If this is not mirrored at home, there is limited opportunity for joint reading sessions. Development of the e-Book required planning and technical development. The overall production took time as video footage needed to be shot and then edited individually for each page. There were various technical considerations such as having an appropriate background colour so not to draw attention away from the signer. Appointing a signer with the required high level of BSL was essential. The language and pace of the sign language was an important consideration as it was required to match the age and reading level of the book. When translating English text to BSL, careful consideration was given to the nonlinear nature of BSL and the differences in language structure and syntax. The e-book was produced using Apple’s ‘iBook Author’ software which allowed video footage of the signer to be embedded on pages opposite the text and illustration. This enabled BSL translation of the content of the text and inferences of the story. An interpreter was used to directly ‘voice over’ the signer rather than the actual text. The aim behind the structure and layout of the e-book is to allow parents to ‘read’ with their deaf child which helps to develop both languages. From observations, the use of e-books has given pupils confidence and motivation with their reading, developing skills bridging both BSL and English languages and more effective reading time with parents.

Keywords: bilingual book, e-book, BSL and English, bilingual e-book

Procedia PDF Downloads 174
2492 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection

Procedia PDF Downloads 460
2491 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 160
2490 The Cultural and Semantic Danger of English Transparent Words Translated from English into Arabic

Authors: Abdullah Khuwaileh

Abstract:

While teaching and translating vocabulary is no longer a neglected area in ELT in general and in translation in particular, the psychology of its acquisition has been a neglected area. Our paper aims at exploring some of the learning and translating conditions under which vocabulary is acquired and translated properly. To achieve this objective, two teaching methods (experiments) were applied on 4 translators to measure their acquisition of a number of transparent vocabulary items. Some of these items were knowingly chosen from 'deceptively transparent words'. All the data, sample, etc., were taken from Jordan University of Science and Technology (JUST) and Yarmouk University, where the researcher is employed. The study showed that translators might translate transparent words inaccurately, particularly if these words are uncontextualised. It was also shown that the morphological structures of words may lead translators or even EFL learners to misinterpretations of meaning.

Keywords: english, transparent, word, processing, translation

Procedia PDF Downloads 73
2489 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.

Keywords: brain-derived neurotrophic factor, iron, vitamin B9, vitamin B12, vitamin D

Procedia PDF Downloads 124
2488 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 61
2487 Numerical Study of Homogeneous Nanodroplet Growth

Authors: S. B. Q. Tran

Abstract:

Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.

Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth

Procedia PDF Downloads 277
2486 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands

Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya

Abstract:

Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.

Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification

Procedia PDF Downloads 68
2485 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 83
2484 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 153
2483 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 133
2482 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned

Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh

Abstract:

This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.

Keywords: activity-based costing, activity-based management, construction, architectural aluminum

Procedia PDF Downloads 109
2481 The Macrophage Migration Inhibitory Factor and Stem Cell Factor Levels in Serum of Adolescent and Young Adults with Mood Disorders: A Two Year Follow-Up Study

Authors: Aleksandra Rajewska-Rager, Maria Skibinska, Monika Dmitrzak-Weglarz, Natalia Lepczynska, Pawel Kapelski, Joanna Pawlak, Joanna Hauser

Abstract:

Introduction: Inflammation and cytokines have emerged as a promising target in mood disorders research; however there are still very limited numbers of study regarding inflammatory alterations among adolescents and young adults with mood disorders. The Macrophage Migration Inhibitory Factor (MIF) and Stem Cell Factor (SCF) are the pleiotropic cytokines which may play an important role in mood disorders pathophysiology. The aim of this study was to investigate levels of these factors in serum of adolescent and young adults with mood disorders compared to healthy controls. Subjects: We involved 79 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorders: bipolar disorder (BP) and unipolar disorder with BP spectrum. Study group includes 23 males (mean age 19.08, SD 3.3) and 56 females (18.39, SD 3.28). Control group consisted 35 persons: 7 males (20.43, SD 4.23) and 28 females (21.25, SD 2.11). Clinical diagnoses according to DSM-IV-TR criteria were assessed using Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version (K-SADS-PL) and Structured Clinical Interview for the Diagnostic and Statistical Manual (SCID) in young adults respectively. Clinical assessment includes evaluation of clinical factors and symptoms severity (rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale). Clinical and biological evaluations were made at control visits respectively at baseline (week 0), euthymia (at month 3 or 6) and after 12 and 24 months. Methods: Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human MIF and SCF DuoSet ELISA kits were used. In the analyses non-parametric tests were used: Mann-Whitney U test, Kruskal-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation. We defined statistical significance as p < 0.05. Results: Comparing MIF and SCF levels between acute episode of depression/hypo/mania at baseline and euthymia (at month 3 or 6) we did not find any statistical differences. At baseline patients with age above 18 years old had decreased MIF level compared to patients younger than 18 years. MIF level at baseline positively correlated with age (p=0.004). Positive correlations of SCF level at month 3 and 6 with depression or mania occurrence at month 24 (p=0.03 and p=0.04, respectively) was detected. Strong correlations between MIF and SCF levels at baseline (p=0.0005) and month 3 (p=0.03) were observed. Discussion: Our results did not show any differences in MIF and SCF levels between acute episode of depression/hypo/mania and euthymia in young patients. Further studies on larger groups are recommended. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.

Keywords: cytokines, MIF, mood disorders, SCF

Procedia PDF Downloads 203
2480 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 20
2479 The New World Kirkpatrick Model as an Evaluation Tool for a Publication Writing Programme

Authors: Eleanor Nel

Abstract:

Research output is an indicator of institutional performance (and quality), resulting in increased pressure on academic institutions to perform in the research arena. Research output is further utilised to obtain research funding. Resultantly, academic institutions face significant pressure from governing bodies to provide evidence on the return for research investments. Research output has thus become a substantial discourse within institutions, mainly due to the processes linked to evaluating research output and the associated allocation of research funding. This focus on research outputs often surpasses the development of robust, widely accepted tools to additionally measure research impact at institutions. A publication writing programme, for enhancing research output, was launched at a South African university in 2011. Significant amounts of time, money, and energy have since been invested in the programme. Although participants provided feedback after each session, no formal review was conducted to evaluate the research output directly associated with the programme. Concerns in higher education about training costs, learning results, and the effect on society have increased the focus on value for money and the need to improve training, research performance, and productivity. Furthermore, universities rely on efficient and reliable monitoring and evaluation systems, in addition to the need to demonstrate accountability. While publishing does not occur immediately, achieving a return on investment from the intervention is critical. A multi-method study, guided by the New World Kirkpatrick Model (NWKM), was conducted to determine the impact of the publication writing programme for the period of 2011 to 2018. Quantitative results indicated a total of 314 academics participating in 72 workshops over the study period. To better understand the quantitative results, an open-ended questionnaire and semi-structured interviews were conducted with nine participants from a particular faculty as a convenience sample. The purpose of the research was to collect information to develop a comprehensive framework for impact evaluation that could be used to enhance the current design and delivery of the programme. The qualitative findings highlighted the critical role of a multi-stakeholder strategy in strengthening support before, during, and after a publication writing programme to improve the impact and research outputs. Furthermore, monitoring on-the-job learning is critical to ingrain the new skills academics have learned during the writing workshops and to encourage them to be accountable and empowered. The NWKM additionally provided essential pointers on how to link the results more effectively from publication writing programmes to institutional strategic objectives to improve research performance and quality, as well as what should be included in a comprehensive evaluation framework.

Keywords: evaluation, framework, impact, research output

Procedia PDF Downloads 79
2478 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials

Authors: Marc Sader, Michiel Stock, Bernard De Baets

Abstract:

Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.

Keywords: adsorption, predictive modeling, QSAR, random forest

Procedia PDF Downloads 233
2477 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation

Authors: Judit Vilarmau

Abstract:

Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.

Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy

Procedia PDF Downloads 92
2476 Study on the Role of Positive Emotions in Developmental Psychology

Authors: Hee Soo Kim, Ha Young Kyung

Abstract:

This paper examines the role of positive emotions in human psychology. By understanding Fredrickson and Lyubomirsky et al.’s on positive emotions, one can better understand people’s intuitive understanding, mental health and well-being. Fredrickson asserts that positive emotions create positive affects and personal resources, and Lyubomirsky et al. relate such positive resources to the creation of happiness and personal development. This paper finds that positive emotions play a significant role in the learning process, and they are instrumental in creating a long-lasting repertoire of personal resources and play an essential role in the development of the intuitive understanding of life variables, resilience in coping with life challenges, and ability to build more successful lives.

Keywords: Positive emotions, positive affects, personal resources, negative emotions, development

Procedia PDF Downloads 314
2475 A Systematic Literature Review of the Influence of New Media-Based Interventions on Drug Abuse

Authors: Wen Huei Chou, Te Lung Pan, Tsu Wen Yeh

Abstract:

New media have recently received increasing attention as a new communication form. The COVID-19 outbreak has pushed people’s lifestyles into the digital age, and the drug market has infiltrated formal e-commerce platforms. The self-media boom has fostered growth in online drug myths. To set the record straight, it is imperative to develop new media-based interventions. However, the usefulness of new media on this issue has not yet been fully examined. This study selected 13 articles on the development of new media-based interventions to prevent drug abuse from Airiti Library and Pub-Med as of October 3, 2021. The key conclusions are that (1) new media have a significantly positive influence on skills, self-efficacy, and behavior; (2) most interventions package traditional course learning into new media formats; and (3) new media can create a covert, interactive environment that cannot be replicated offline, which may merit attention in future research.

Keywords: drug abuse, interventions, new media, systematic review

Procedia PDF Downloads 158