Search results for: learning physical
7428 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings
Authors: Arif Ahmed Mohammed Al-Ahdal
Abstract:
Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.Keywords: SLA, literary text, poetry, tales, affective factors
Procedia PDF Downloads 837427 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 637426 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture
Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz
Abstract:
The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering
Procedia PDF Downloads 3167425 The Effectiveness of Teaching Games for Understanding in Improving the Hockey Tactical Skills and State Self-Confidence among 16 Years Old Students
Authors: Wee Akina Sia Seng Lee, Shabeshan Rengasamy, Lim Boon Hooi, Chandrakalavaratharajoo, Mohd Ibrahim K. Azeez
Abstract:
This study was conducted to examine the effectiveness of Teaching Games For Understanding (TGFU) in improving the hockey tactical skills and state self-confidence among 16-year-old students. Two hundred fifty nine (259) school students were selected for the study based on the intact sampling method. One class was used as the control group (Boys=60, Girls=70), while another as the treatment group (Boys=60, Girls=69) underwent intervention with TGFU in physical education class conducted twice a week for four weeks. The Games Performance Assessment Instrument was used to observe the hockey tactical skills and The State Self-Confidence Inventory was used to determine the state of self-confidence among the students. After four weeks, ANCOVA analysis indicated the treatment groups had significant improvement in hockey tactical skills with F (1, 118) =313.37, p < .05 for school boys, and F (1, 136) =92.62, p < .05 for school girls. The Mann Whitney U test also showed the treatment groups had significant improvement in state self-confidence with U=428.50, z= -7.22, p < .05, r=.06 for school boys. ANCOVA analysis also showed the treatment group had significant improvement in state self-confidence with F (1, 136) =74.40, p < .05 for school girls. This indicates that TGFU in a 40 minute physical education class conducted twice a week for four weeks can significantly improve the hockey tactical skills and state self-confidence among 16-year-old students. The findings give new knowledge to PE teachers to implement the TGFU method as it enhances the hockey tactical skills and state self-confidence among 16-year-old students. Some recommendation was suggested for future research.Keywords: Teaching Games For Understanding (TGFU), traditional teaching, hockey tactical skills, state self-confidence
Procedia PDF Downloads 3587424 Comparative Analysis of Physical Natural Parameters Influencing Baltic Sea Coastal Tourism in the Context of Climate Change
Authors: Akvelina Čuladytė, Inga Dailidienė
Abstract:
Climate change and sustainable development are among the most significant global challenges, directly impacting various economic sectors, including coastal tourism. The United Nations (UN) and its specialized agencies, such as the World Tourism Organization (UNWTO) and the United Nations Convention on the Law of the Sea (UNCLOS), examine coastal tourism from multiple perspectives, emphasizing its economic, social, and environmental importance, as well as the challenges related to sustainability. Sustainability, linked to climate change, is an integral concept requiring a holistic approach to managing natural resources, reducing emissions, protecting ecosystems, and implementing adaptation strategies. Only by integrating these principles can we adapt to the impacts of climate change, reduce the carbon footprint of the tourism sector, and manage tourist flows to prevent excessive strain on marine and coastal ecosystems. Climate change is having an increasing impact on the Baltic Sea region, causing rising temperatures, sea level rise, more frequent extreme weather events, and coastal erosion. These changes can significantly affect the tourism sector, which is important not only economically but also socially. The primary aim of this study is to analyze changes in physical natural parameters (temperature, precipitation, water quality, sea level rise, and coastal erosion) that influence Baltic Sea coastal tourism in order to identify and assess how climate change impacts coastal tourism. The Baltic States, with its long and diverse coastlines, are particularly sensitive to the impacts of climate change, which can influence the geography of coastal tourism. Therefore, the aim is to assess how these factors determine the attractiveness and opportunities for tourism. In studying the effects of climate change on the geography of coastal tourism, methods used in climatology, as well as historical meteorological and hydrological data, are applied. Analyzing historical data on extreme events, such as storms, heatwaves, and floods, helps determine their impact on tourism infrastructure and visitor numbers. Based on the North Atlantic Oscillation (NAO) index, both limiting and enhancing factors for tourism are identified, including the benefits of a longer warm season and the increasing frequency of extreme weather conditions. The expected research results provide insights into how climate change and sustainable development strategies can shape and transform the structure and trends of coastal tourism in the region. The findings indicate that meteorological conditions and climate change play a significant role in regulating tourism flows.Keywords: coastal tourism, climate change impacts, physical natural parameters, NAO index
Procedia PDF Downloads 137423 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties
Authors: Norah Alosayl
Abstract:
English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations
Procedia PDF Downloads 1977422 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 867421 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3937420 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1247419 The Reasons and the Practical Benefits Behind the Motivation of Businesses to Participate in the Dual Education System (DLS)
Authors: Ainur Bulasheva
Abstract:
During the last decade, the dual learning system (DLS) has been actively introduced in various industries in Kazakhstan, including both vocational, post-secondary, and higher education levels. It is a relatively new practice-oriented approach to training qualified personnel in Kazakhstan, officially introduced in 2012. Dual learning was integrated from the German vocational education and training system, combining practical training with part-time work in production and training in an educational institution. The policy of DLS has increasingly focused on decreasing youth unemployment and the shortage of mid-level professionals by providing incentives for employers to involve in this system. By participating directly in the educational process, the enterprise strives to train its future personnel to meet fast-changing market demands. This study examines the effectiveness of DLS from the perspective of employers to understand the motivations of businesses to participate (invest) in this program. The human capital theory of Backer, which predicts that employers will invest in training their workers (in our case, dual students) when they expect that the return on investment will be greater than the cost - acts as a starting point. Further extensionists of this theory will be considered to understand investing intentions of businesses. By comparing perceptions of DLS employers and non-dual practices, this study determines the efficiency of promoted training approach for enterprises in the Kazakhstan agri-food industry.Keywords: vocational and technical education, dualeducation, human capital theory, argi-food industry
Procedia PDF Downloads 747418 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 2487417 Slums in Casablanca: A Conceptive Approach for Better Implementation of VSB Program, Case Study: ER-Hamna Slum
Authors: Sakina Boufarsi, Mehmet Emre Aysu, Behiye Isik Aksulu
Abstract:
Morocco appears to be on its way to eradicating all of the country's slums by assuring the resettlement and improvement of all affected households' living circumstances through the VSB “Villes sans Bidonvilles” program established in 2004 to eradicate the slums in Morocco. Although many attempts have been made to curb their growth none have proven to be a permanent accomplishment. In Morocco, resettlement projects through satellite towns are perceived as the answer to the problem of the slums. However, the new satellite towns are the good intention of the program VSB, but they are environmentally unsustainable, socially isolated and culturally inappropriate, such conditions imposed continuous readjustments of the slum upgrading program. Although slum research is ongoing, they primarily concentrated on two constructs: exploring socio-economic and policy problems and analyzing physical characteristics. Considering that the two constructs mentioned are crucial, this study will demonstrate that a more systematic approach is needed to eradicate them efficiently. The slums issues in Casablanca are a solution that the poor devise for themselves due to government bureaucracy and failing housing policies, they reflect governments' incapacity to respond to urban development’s requiring decent housing for the vulnerable population. This issue will be addressed by exploring the previous strategies and analyzing in detail the strengths and shortcomings of the recent VSB Program. In addition to a comprehensive overview of the slums' situations by combining the social and physical characteristics through Erhamna case study in Sidi Moumen district for a deeper understanding, and therefore to direct improved and valuable recommendations to address the slum problem at all levels.Keywords: Casablanca slums, resettlement projects, eradication of slums, satellite town, VSB program
Procedia PDF Downloads 1857416 Promotion of the Arabic language in India: MES Mampad College - A Torchbearer
Authors: Junaid C, Sabique MK
Abstract:
Introduction: MES Mamapd College is an autonomous college established in 1964 affiliated with the University of Calicut run by the Muslim Educational Society Kerala. The department of Arabic of the college is having a pivotal role in promoting Arabic language learning, teaching, research, and other allied academic activities. State of Problem: Department of Arabic of the college introduced before the academic committee the culture of international seminars. The department connected the academic community with foreign scholars and introduced industry-academia collaboration programs which are beneficial to the job seekers. These practices and innovations should be documented. Objectives: Create awareness of innovative practices implemented for the promotion of the Arabic language. Infuse confidence in learners in learning of Arabic language. Showcase the distinctive academic programs initiated by the department Methodology: Data will be collected from archives, souvenirs, and reports. Survey methods and interviews with authorities and beneficiaries will be collected for the data analysis. Major results: MES Mampad College introduced before its stakeholders different unique academic practices related to the Arabic language and literature. When the unprecedented pandemic situation pulled back all of the academic community, the department come forward with numerous academic initiatives utilizing the virtual space. Both arenas will be documented. Conclusion: This study will help to make awareness on the promotion of the Arabic language studies and related practices initiated by the department of Arabic MES Mampad College. These practices and innovations can be modeled and replicated.Keywords: teaching Arabic language, MES mampad college, Arabic webinars, pandemic impacts in literature
Procedia PDF Downloads 907415 Variation among East Wollega Coffee (Coffea arabica L.) Landraces for Quality Attributes
Authors: Getachew Weldemichael, Sentayehu Alamerew, Leta Tulu, Gezahegn Berecha
Abstract:
Coffee quality improvement program is becoming the focus of coffee research, as the world coffee consumption pattern shifted to high-quality coffee. However, there is limited information on the genetic variation of C. Arabica for quality improvement in potential specialty coffee growing areas of Ethiopia. Therefore, this experiment was conducted with the objectives of determining the magnitude of variation among 105 coffee accessions collected from east Wollega coffee growing areas and assessing correlations between the different coffee qualities attributes. It was conducted in RCRD with three replications. Data on green bean physical characters (shape and make, bean color and odor) and organoleptic cup quality traits (aromatic intensity, aromatic quality, acidity, astringency, bitterness, body, flavor, and overall standard of the liquor) were recorded. Analysis of variance, clustering, genetic divergence, principal component and correlation analysis was performed using SAS software. The result revealed that there were highly significant differences (P<0.01) among the accessions for all quality attributes except for odor and bitterness. Among the tested accessions, EW104 /09, EW101 /09, EW58/09, EW77/09, EW35/09, EW71/09, EW68/09, EW96 /09, EW83/09 and EW72/09 had the highest total coffee quality values (the sum of bean physical and cup quality attributes). These genotypes could serve as a source of genes for green bean physical characters and cup quality improvement in Arabica coffee. Furthermore, cluster analysis grouped the coffee accessions into five clusters with significant inter-cluster distances implying that there is moderate diversity among the accessions and crossing accessions from these divergent inter-clusters would result in hetrosis and recombinants in segregating generations. The principal component analysis revealed that the first three principal components with eigenvalues greater than unity accounted for 83.1% of the total variability due to the variation of nine quality attributes considered for PC analysis, indicating that all quality attributes equally contribute to a grouping of the accessions in different clusters. Organoleptic cup quality attributes showed positive and significant correlations both at the genotypic and phenotypic levels, demonstrating the possibility of simultaneous improvement of the traits. Path coefficient analysis revealed that acidity, flavor, and body had a high positive direct effect on overall cup quality, implying that these traits can be used as indirect criteria to improve overall coffee quality. Therefore, it was concluded that there is considerable variation among the accessions, which need to be properly conserved for future improvement of the coffee quality. However, the variability observed for quality attributes must be further verified using biochemical and molecular analysis.Keywords: accessions, Coffea arabica, cluster analysis, correlation, principal component
Procedia PDF Downloads 1717414 Cross-Sectional Study of Critical Parameters on RSET and Decision-Making of At-Risk Groups in Fire Evacuation
Authors: Naser Kazemi Eilaki, Ilona Heldal, Carolyn Ahmer, Bjarne Christian Hagen
Abstract:
Elderly people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to a safe place. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. While earlier studies have frequently addressed quantitative measurements regarding at-risk groups' physical characteristics (e.g., their speed of travel), this paper considers the influence of at-risk groups’ characteristics on their decision and determining better escape routes. Most of evacuation models are based on mapping people's movement and their behaviour to summation times for common activity types on a timeline. Usually, timeline models estimate required safe egress time (RSET) as a sum of four timespans: detection, alarm, premovement, and movement time, and compare this with the available safe egress time (ASET) to determine what is influencing the margin of safety.This paper presents a cross-sectional study for identifying the most critical items on RSET and people's decision-making and with possibilities to include safety knowledge regarding people with physical or cognitive functional impairments. The result will contribute to increased knowledge on considering at-risk groups and disabilities for designing and developing safe escape routes. The expected results can be an asset to predict the probabilistic behavioural pattern of at-risk groups and necessary components for defining a framework for understanding how stakeholders can consider various disabilities when determining the margin of safety for a safe escape route.Keywords: fire safety, evacuation, decision-making, at-risk groups
Procedia PDF Downloads 1107413 The Impact of Artificial Intelligence on Digital Construction
Authors: Omil Nady Mahrous Maximous
Abstract:
The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 647412 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students
Authors: Nahid Nariman
Abstract:
The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.Keywords: problem-based learning, science education, STEM, underrepresented students
Procedia PDF Downloads 1277411 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 527410 The Effective Method for Postering Thinking Dispositions of Learners
Authors: H. Jalahi, A. Yazdanpanah Nozari
Abstract:
Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.Keywords: assessment, authentic, medical courses, developmental
Procedia PDF Downloads 3667409 The Impact of Professional Development on Teachers’ Instructional Practice
Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier
Abstract:
Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. In this study, we examine a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data was collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers were self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used.Keywords: teacher learning, professional development, pedagogical content knowledge, geometry
Procedia PDF Downloads 1727408 Attitude-Behavior Consistency: A Descriptive Study in the Context of Climate Change and Acceptance of Psychological Findings by the Public
Authors: Nita Mitra, Pranab Chanda
Abstract:
In this paper, the issue of attitude-behavior consistency has been addressed in the context of climate change. Scientists (about 98 percent) opine that human behavior has a significant role in climate change. Such climate changes are harmful for human life. Thus, it is natural to conclude that only change of human behavior can avoid harmful consequences. Government and Non-Government Organizations are taking steps to bring in the desired changes in behavior. However, it seems that although the efforts are achieving changes in the attitudes to some degree, those steps are failing to materialize the corresponding behavioral changes. This has been a great concern for environmentalists. Psychologists have noticed the problem as a particular case of the general psychological problem of making attitude and behavior consistent with each other. The present study is in continuation of a previous work of the same author based upon descriptive research on the status of attitude and behavior of the people of a foot-hill region of the Himalayas in India regarding climate change. The observations confirm the mismatch of attitude and behavior of the people of the region with respect to climate change. While doing so an attitude-behavior mismatch has been noticed with respect to the acceptance of psychological findings by the public. People have been found to be interested in Psychology as an important subject, but they are reluctant to take the observations of psychologists seriously. A comparative study in this regard has been made with similar studies done elsewhere. Finally, an attempt has been made to perceive observations in the framework of observational learning due to Bandura's and behavior change due to Lewin.Keywords: acceptance of psychological variables, attitude-behavior consistency, behavior change, climate change, observational learning
Procedia PDF Downloads 1617407 The Practice and Research of Computer-Aided Language Learning in China
Authors: Huang Yajing
Abstract:
Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.Keywords: English education, educational technology, computer-aided language teaching, applied linguistics
Procedia PDF Downloads 607406 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 1257405 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang
Authors: Basyir Yaman, Fades Br. Gultom
Abstract:
The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih Semarang, formal education system, Indonesia
Procedia PDF Downloads 3377404 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 3767403 Innovations in International Trauma Education: An Evaluation of Learning Outcomes and Community Impact of a Guyanese trauma Training Graduate Program
Authors: Jeffrey Ansloos
Abstract:
International trauma education in low and emerging economies requires innovative methods for capacity building in existing social service infrastructures. This study details the findings of a program evaluation used to assess the learning outcomes and community impact of an international trauma-focused graduate degree program in Guyana. Through a collaborative partnership between Lesley University, the Government of Guyana, and UNICEF, a 2-year low-residency masters degree graduate program in trauma-focused assessment, intervention, and treatment was piloted with a cohort of Guyanese mental health professionals. Through an analytical review of the program development, as well as qualitative data analysis of participant interviews and focus-groups, this study will address the efficacy of the programming in terms of preparedness of professionals to understand, evaluate and implement trauma-informed practices across various child, youth, and family mental health service settings. Strengths and limitations of this international trauma-education delivery model will be discussed with particular emphasis on the role of capacity-building interventions, community-based participatory curriculum development, innovative technological delivery platforms, and interdisciplinary education. Implications for further research and subsequent program development will be discussed.Keywords: mental health promotion, global health promotion, trauma education, innovations in education, child, youth, mental health education
Procedia PDF Downloads 3717402 Course Perceiving Differences among College Science Students from Various Cultures: A Case Study in the US
Authors: Yuanyuan Song
Abstract:
Background: As we all know, culture plays a pivotal role in the realm of education, influencing study perceptions and outcomes. Nevertheless, there remains a need to delve into how culture specifically impacts the perception of courses. Therefore, the impact of culture on students' perceptions and academic performance is explored in this study. Drawing from cultural constructionism and conflict theories, it is posited that when students hailing from diverse cultures and backgrounds converge in the same classroom, their perceptions of course content may diverge significantly. This study seeks to unravel the tangible disparities and ascertain how cultural nuances shape students' perceptions of classroom content when encountering diverse cultural contexts within the same learning environment. Methodology: Given the diverse cultural backgrounds of students within the US, this study draws upon data collected from a course offered by a US college. In pursuit of answers to these inquiries, a qualitative approach was employed, involving semi-structured interviews conducted in a college-level science class in the US during 2023. The interviews encompassed approximately nine questions, spanning demographic particulars, cultural backgrounds, science learning experiences, academic outcomes, and more. Participants were exclusively drawn from science-related majors, with each student originating from a distinct cultural context. All participants were undergraduates, and most of them were from eighteen to twenty-five years old, totaling six students who attended the class and willingly participated in the interviews. The duration of each interview was approximately twenty minutes. Results: The findings gleaned from the interview data underscore the notable impact of varying cultural contexts on students' perceptions. This study argues that female science students, for instance, are influenced by gender dynamics due to the predominant male presence in science majors, creating an environment where female students feel reticent about expressing themselves in public. Students of East Asian origin exhibit a stronger belief in the efficacy of personal efforts when contrasted with their North American counterparts. Minority students indicated that they grapple with integration into the predominantly white mainstream society, influencing their eagerness to engage in classroom activities that are conducted by white professors. All of them emphasized the importance of learning science.Keywords: multiculture education, educational sociology, educational equality, STEM education
Procedia PDF Downloads 647401 The Culture of Journal Writing among Manobo Senior High School Students
Authors: Jessevel Montes
Abstract:
This study explored on the culture of journal writing among the Senior High School Manobo students. The purpose of this qualitative morpho-semantic and syntactic study was to discover the morphological, semantic, and syntactic features of the written output through morphological, semantic, and syntactic categories present in their journal writings. Also, beliefs and practices embedded in the norms, values, and ideologies were identified. The study was conducted among the Manobo students in the Senior High Schools of Central Mindanao, particularly in the Division of North Cotabato. Findings revealed that morphologically, the features that flourished are the following: subject-verb concordance, tenses, pronouns, prepositions, articles, and the use of adjectives. Semantically, the features are the following: word choice, idiomatic expression, borrowing, and vernacular. Syntactically, the features are the types of sentences according to structure and function; and the dominance of code switching and run-on sentences. Lastly, as to the beliefs and practices embedded in the norms, values, and ideologies of their journal writing, the major themes are: valuing education, family, and friends as treasure, preservation of culture, and emancipation from the bondage of poverty. This study has shed light on the writing capabilities and weaknesses of the Manobo students when it comes to English language. Further, such an insight into language learning problems is useful to teachers because it provides information on common trouble-spots in language learning, which can be used in the preparation of effective teaching materials.Keywords: applied linguistics, culture, morpho-semantic and syntactic analysis, Manobo Senior High School, Philippines
Procedia PDF Downloads 1227400 Modeling Curriculum for High School Students to Learn about Electric Circuits
Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai
Abstract:
Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.Keywords: electric circuits, modeling curriculum, science learning, scientific model
Procedia PDF Downloads 4637399 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 89