Search results for: adaptive surface reconstruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8095

Search results for: adaptive surface reconstruction

2725 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration

Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen

Abstract:

Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.

Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration

Procedia PDF Downloads 25
2724 The Concept of Anchor Hazard Potential Map

Authors: Sao-Jeng Chao, Chia-Yun Wei, Si-Han Lai, Cheng-Yu Huang, Yu-Han Teng

Abstract:

In Taiwan, the landforms are mainly dominated by mountains and hills. Many road sections of the National Highway are impossible to avoid problems such as slope excavation or slope filling. In order to increase the safety of the slope, various slope protection methods are used to stabilize the slope, especially the soil anchor technique is the most common. This study is inspired by the soil liquefaction potential map. The concept of the potential map is widely used. The typhoon, earth-rock flow, tsunami, flooded area, and the recent discussion of soil liquefaction have safety potential concepts. This paper brings the concept of safety potential to the anchored slope. Because the soil anchor inspection is only the concept of points, this study extends the concept of the point to the surface, using the Quantum GIS program to present the slope damage area, and depicts the slope appearance and soil anchor point with the slope as-built drawing. The soil anchor scores are obtained by anchor inspection data, and the low, medium and high potential areas are remitted by interpolation. Thus, the area where the anchored slope may be harmful is judged and relevant maintenance is provided. The maintenance units can thus prevent judgment and deal with the anchored slope as soon as possible.

Keywords: anchor, slope, potential map, lift-off test, existing load

Procedia PDF Downloads 135
2723 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 62
2722 Heavy Metals Concentration in Sediments Along the Ports, Samoa

Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh

Abstract:

Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.

Keywords: coastal environment, heavy metals, pollution, sediments

Procedia PDF Downloads 321
2721 Evaluation of the Construction of Terraces on a Family Farm in the Municipality of Jaboticabal (SP), Brazil

Authors: Anderson dos Santos Ananias, Matheus Yuji Shigueoka, Roberto Saverio Souza Costa

Abstract:

Soil and water conservation can be conceptualized as a combination of management and use methods, which have the function of protecting them against deterioration induced by anthropogenic or natural factors. Thus, the objective of this research was to evaluate the rural extension work in soil conservation carried out at Sítio do Alto in Jaboticabal-SP, through the analysis of planimetric data (latitude and longitude coordinates) and altimetric differences of the empirically constructed terraces by the rural producer and with technical guidance from CATI (Coordination of Integral Technical Assistance). A data collection procedure was carried out in the field, with GPS L1/L2, before the construction of five (5) terraces technically level and after their construction. The results showed that the greatest differences were found on terrace one (1), with a maximum latitude difference of 57 meters, the longitude of 23 m, and altitude of 2 m. These results corroborate the observations in the field, in which the presence of a great erosion caused by the incorrect construction of terrace 1 was verified rainwater to the side of the rural property, where the largest erosion furrows with the beginning of gully formation were found.

Keywords: GPS, mechanical pratice, surface runoff, erosion

Procedia PDF Downloads 114
2720 On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis

Authors: Rahul Saini, Roshan Lal

Abstract:

The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature.

Keywords: bi-directionally FG, GDQM, Mindlin’s circular plate, neutral axis, vibrations

Procedia PDF Downloads 125
2719 Assessment of Naturally Occurring Radionuclides of the Surface Water in Vaal River, South Africa

Authors: Kgantsi B. T., Ochwelwang A. R., Mathuthu M., Jegede O. A.

Abstract:

Anthropogenic activities near water bodies contribute to poor water quality, which degrades the condition of the biota and elevates the risk to human health. The Vaal River is essential in supplying Gauteng and neighboring regions of South Africa with portable water for a variety of consumers and industries. Consequently, it is necessary to monitor and assess the radioactive risk in relation to the river's water quality. This study used an inductive coupled plasma mass spectrometer (ICPMS) to analyze the radionuclide activity concentration in the Vaal River, South Africa. Along with thorium and potassium, the total uranium concentration was calculated using the isotopic content of uranium. The elemental concentration of ²³⁸U, ²³⁵U, ²³⁴U, ²³²Th, and 40K were translated into activity concentrations. To assess the water safety for all users and consumers, all values were compared to world average activity concentrations 35, 30, and 400 Bqkg⁻¹ for ²³⁸U, ²³⁴Th, and ⁴⁰K, respectively, according to the UNSCEAR report. The results will serve as a database for further monitoring and evaluation of the radionuclide from the river, taking cognisance of potential health hazards.

Keywords: Val Rivers, ICPMS, uranium, risks

Procedia PDF Downloads 159
2718 SLAMF5 Regulates Myeloid Cells Activation in the Eae Model

Authors: Laura Bellassen, Idit Shachar

Abstract:

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis.

Keywords: multiple sclerosis, EAE model, myeloid cells, new antibody, neuroimmunology

Procedia PDF Downloads 49
2717 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs

Authors: N. Allouache, O. Rahli

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.

Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs

Procedia PDF Downloads 145
2716 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium

Procedia PDF Downloads 380
2715 Challenges in Environmental Governance: A Case Study of Risk Perceptions of Environmental Agencies Involved in Flood Management in the Hawkesbury-Nepean Region, Australia

Authors: S. Masud, J. Merson, D. F. Robinson

Abstract:

The management of environmental resources requires engagement of a range of stakeholders including public/private agencies and different community groups to implement sustainable conservation practices. The challenge which is often ignored is the analysis of agencies involved and their power relations. One of the barriers identified is the difference in risk perceptions among the agencies involved that leads to disjointed efforts of assessing and managing risks. Wood et al 2012, explains that it is important to have an integrated approach to risk management where decision makers address stakeholder perspectives. This is critical for an effective risk management policy. This abstract is part of a PhD research that looks into barriers to flood management under a changing climate and intends to identify bottlenecks that create maladaptation. Experiences are drawn from international practices in the UK and examined in the context of Australia through exploring the flood governance in a highly flood-prone region in Australia: the Hawkesbury Ne-pean catchment as a case study. In this research study several aspects of governance and management are explored: (i) the complexities created by the way different agencies are involved in assessing flood risks (ii) different perceptions on acceptable flood risk level; (iii) perceptions on community engagement in defining acceptable flood risk level; (iv) Views on a holistic flood risk management approach; and, (v) challenges of centralised information system. The study concludes that the complexity of managing a large catchment is exacerbated by the difference in the way professionals perceive the problem. This has led to: (a) different standards for acceptable risks; (b) inconsistent attempt to set-up a regional scale flood management plan beyond the jurisdictional boundaries: (c) absence of a regional scale agency with license to share and update information (d) Lack of forums for dialogue with insurance companies to ensure an integrated approach to flood management. The research takes the Hawkesbury-Nepean catchment as case example and draws from literary evidence from around the world. In addition, conclusions were extrapolated from eighteen semi-structured interviews from agencies involved in flood risk management in the Hawkesbury-Nepean catchment of NSW, Australia. The outcome of this research is to provide a better understanding of complexity in assessing risks against a rapidly changing climate and contribute towards developing effective risk communication strategies thus enabling better management of floods and achieving increased level of support from insurance companies, real-estate agencies, state and regional risk managers and the affected communities.

Keywords: adaptive governance, flood management, flood risk communication, stakeholder risk perceptions

Procedia PDF Downloads 283
2714 The Effects of pH on the Electrochromism in Nickel Oxide Films

Authors: T. Taşköprü, M. Zor, E. Turan

Abstract:

The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.

Keywords: nickel oxide, XRD, SEM, cyclic voltammetry

Procedia PDF Downloads 299
2713 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 126
2712 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 106
2711 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 88
2710 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation

Procedia PDF Downloads 407
2709 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India

Authors: Shailendra Kumar Patidar

Abstract:

Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.

Keywords: Brahma Sarover, eutrophication, nutrients, trophic status

Procedia PDF Downloads 367
2708 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 375
2707 Influence of Shear Parameter on Liquefaction Susceptibility of Ramsar Sand

Authors: Siavash Salamatpoor, Hossein Motaghedi, Jr., Mehrdad Nategh

Abstract:

In this study, undrained triaxial tests under anisotropic consolidation were conducted on the reconstituted samples of Ramsar sand, which underlies a densely populated, seismic region of the southern coast of Caspian Sea in Mazandaran province, Iran. Ramsar costal city is regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. The specimens were consolidated anisotropically to simulate initial shear stress which is mobilized due to surface constructions. Different states of soil behavior were obtained by applying different levels of initial relative density, shear stress, and effective stress. It is shown that Ramsar clean sand can experience the whole possible states of liquefiable soils i.e. fully liquefaction, limited liquefaction, and dilation behaviors. It would be shown that by increasing the shear parameter in high confine pressure, the liquefaction susceptibility has increased while for low confine pressure it would be vice versa.

Keywords: anisotropic, triaxial test, shear parameter, static liquefaction

Procedia PDF Downloads 407
2706 Coating of Polyelectrolyte Multilayer Thin Films on Poly(S/EGDMA) HIPE Loaded with Hydroxyapatite as a Scaffold for Tissue Engineering Application

Authors: Kornkanok Noulta, Pornsri Pakeyangkoon, Stephen T. Dubas, Pomthong Malakul, Manit Nithithanakul

Abstract:

In recent years, interest in the development of material for tissue engineering application has increased considerably. Poly(High Internal Phase Emulsion) (PolyHIPE) foam is a material that is good candidate for used in tissue engineering application due to its 3D structure and highly porous with interconnected pore. The PolyHIPE was prepared from poly (styrene/ethylene glycol dimethacrylate) through high internal phase emulsion polymerization technique and loaded with hydroxyapatite (HA) to improve biocompatibility. To further increase hydrophilicity of the obtained polyHIPE, layer-by-layer polyelectrolyte multilayers (PEM) technique was used. A surface property of polyHIPE was characterized by contact angle measurement. Morphology and pore size was observed by scanning electron microscope (SEM). The cell viability was revealed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique.

Keywords: polyelectrolyte multilayer thin film, high internal phase emulsion, polyhipe foam, scaffold, tissue engineering

Procedia PDF Downloads 348
2705 The Effect of Footrest Height on Muscle Fatigue and Discomfort in Prolonged Standing Activities

Authors: Zeinab Rasouli Kahaki, Mohammad Ali Sanjari, Reza Khani Jazani, Mahnaz Saremi, Amir Kavousi

Abstract:

Work which requires prolonged standing, especially in a fixed position can cause discomfort and fatigue. The purpose of this study was to compare the effects of height footrest in discomfort and fatigue lower extremities during long-standing activities. This cross-sectional study was carried out on 15 students with a mean (SD) age of 21.5 ± (2.3) and mean height of 163 ± (2.8). Participants attended 3 sessions each lasting one hour. They stood on three different surfaces: ceramic, footrest 10 and 25 cm. Surface electromyography was used to assess muscle fatigue. Body map and visual analog scale were employed to evaluate discomfort ratings of the lower extremities and the back. Data analyses were performed using ANOVA-R. Based on the results of electromyography there was no difference between soleus, anterior tibial and lateral gastrocnemius muscles fatigue and type of surfaces. There was a significant variation between the surfaces (p < 0.05) and different areas of the body discomfort level; so that the ceramic had the highest discomfort rating, while the lowest ratings were related to the footrest. Further investigations are recommended on the properties of the footrest.

Keywords: electromyography, fatigue, gastrocnemius, lower extremities, soleus, tibial

Procedia PDF Downloads 150
2704 Green Architecture from the Thawing Arctic: Reconstructing Traditions for Future Resilience

Authors: Nancy Mackin

Abstract:

Historically, architects from Aalto to Gaudi to Wright have looked to the architectural knowledge of long-resident peoples for forms and structural principles specifically adapted to the regional climate, geology, materials availability, and culture. In this research, structures traditionally built by Inuit peoples in a remote region of the Canadian high Arctic provides a folio of architectural ideas that are increasingly relevant during these times of escalating carbon emissions and climate change. ‘Green architecture from the Thawing Arctic’ researches, draws, models, and reconstructs traditional buildings of Inuit (Eskimo) peoples in three remote, often inaccessible Arctic communities. Structures verified in pre-contact oral history and early written history are first recorded in architectural drawings, then modeled and, with the participation of Inuit young people, local scientists, and Elders, reconstructed as emergency shelters. Three full-sized building types are constructed: a driftwood and turf-clad A-frame (spring/summer); a stone/bone/turf house with inwardly spiraling walls and a fan-shaped floor plan (autumn); and a parabolic/catenary arch-shaped dome from willow, turf, and skins (autumn/winter). Each reconstruction is filmed and featured in a short video. Communities found that the reconstructed buildings and the method of involving young people and Elders in the reconstructions have on-going usefulness, as follows: 1) The reconstructions provide emergency shelters, particularly needed as climate change worsens storms, floods, and freeze-thaw cycles and scientists and food harvesters who must work out of the land become stranded more frequently; 2) People from the communities re-learned from their Elders how to use materials from close at hand to construct impromptu shelters; 3) Forms from tradition, such as windbreaks at entrances and using levels to trap warmth within winter buildings, can be adapted and used in modern community buildings and housing; and 4) The project initiates much-needed educational and employment opportunities in the applied sciences (engineering and architecture), construction, and climate change monitoring, all offered in a culturally-responsive way. Elders, architects, scientists, and young people added innovations to the traditions as they worked, thereby suggesting new sustainable, culturally-meaningful building forms and materials combinations that can be used for modern buildings. Adding to the growing interest in bio-mimicry, participants looked at properties of Arctic and subarctic materials such as moss (insulation), shrub bark (waterproofing), and willow withes (parabolic and catenary arched forms). ‘Green Architecture from the Thawing Arctic’ demonstrates the effective, useful architectural oeuvre of a resilient northern people. The research parallels efforts elsewhere in the world to revitalize long-resident peoples’ architectural knowledge, in the interests of designing sustainable buildings that reflect culture, heritage, and identity.

Keywords: architectural culture and identity, climate change, forms from nature, Inuit architecture, locally sourced biodegradable materials, traditional architectural knowledge, traditional Inuit knowledge

Procedia PDF Downloads 518
2703 Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels

Authors: Kamal Hammad, Alexey Fedorenko, Ivan Sergeichev

Abstract:

This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model inplane failure, while the Virtual Crack Closure Technique (VCCT) modeled inter-laminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections and wave reverberations in the experimental test. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes.

Keywords: explicit, numerical, spall, damage, CFRP, composite, vessels, explosive, dynamic, impact, Hashin, VCCT

Procedia PDF Downloads 42
2702 Rebuilding Beyond Bricks: The Environmental Psychological Foundations of Community Healing After the Lytton Creek Fire

Authors: Tugba Altin

Abstract:

In a time characterized by escalating climate change impacts, communities globally face extreme events with deep-reaching tangible and intangible consequences. At the intersection of these phenomena lies the profound impact on the cultural and emotional connections that individuals forge with their environments. This study casts a spotlight on the Lytton Creek Fire of 2021, showcasing it as an exemplar of both the visible destruction brought by such events and the more covert yet deeply impactful disturbances to place attachment (PA). Defined as the emotional and cognitive bond individuals form with their surroundings, PA is critical in comprehending how such catastrophic events reshape cultural identity and the bond with the land. Against the stark backdrop of the Lytton Creek Fire's devastation, the research seeks to unpack the multilayered dynamics of PA amidst the tangible wreckage and the intangible repercussions such as emotional distress and disrupted cultural landscapes. Delving deeper, it examines how affected populations renegotiate their affiliations with these drastically altered environments, grappling with both the tangible loss of their homes and the intangible challenges to solace, identity, and community cohesion. This exploration is instrumental in the broader climate change narrative, as it offers crucial insights into how these personal-place relationships can influence and shape climate adaptation and recovery strategies. Departing from traditional data collection methodologies, this study adopts an interpretive phenomenological approach enriched by hermeneutic insights and places the experiences of the Lytton community and its co-researchers at its core. Instead of conventional interviews, innovative methods like walking audio sessions and photo elicitation are employed. These techniques allow participants to immerse themselves back into the environment, reviving and voicing their memories and emotions in real-time. Walking audio captures reflections on spatial narratives after the trauma, whereas photo voices encapsulate the intangible emotions, presenting a visual representation of place-based experiences. Key findings emphasize the indispensability of addressing both the tangible and intangible traumas in community recovery efforts post-disaster. The profound changes to the cultural landscape and the subsequent shifts in PA underscore the need for holistic, culturally attuned, and emotionally insightful adaptation strategies. These strategies, rooted in the lived experiences and testimonies of the affected individuals, promise more resonant and effective recovery efforts. The research further contributes to climate change discourse, highlighting the intertwined pathways of tangible reconstruction and the essentiality of emotional and cultural rejuvenation. Furthermore, the use of participatory methodologies in this inquiry challenges traditional research paradigms, pointing to potential evolutionary shifts in qualitative research norms. Ultimately, this study underscores the need for a more integrative approach in addressing the aftermath of environmental disasters, ensuring that both physical and emotional rebuilding are given equal emphasis.

Keywords: place attachment, community recovery, disaster reponse, sensory responses, intangible traumas, visual methodologies

Procedia PDF Downloads 53
2701 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel

Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao

Abstract:

This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.

Keywords: corrosion, steel, plasma nitriding, X-ray diffraction

Procedia PDF Downloads 195
2700 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran

Authors: Samad Alipour, Khadije Mosavi Onlaghi

Abstract:

Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.

Keywords: Urmia Lake, weathering, mineralogy, augite, Iran

Procedia PDF Downloads 225
2699 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 517
2698 Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's

Authors: Abirham Simeneh Ayalew, Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field.

Keywords: battery energy storage, battery energy storage efficiency, chemical hazards, lithium ion battery

Procedia PDF Downloads 71
2697 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 448
2696 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 165