Search results for: remote sensing data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26241

Search results for: remote sensing data

25731 Channel Dynamics along the Northern Bank of the Upper Brahmaputra River and Formation of a Larger Island with the Loss of the Majuli Island

Authors: Luna Moni Das

Abstract:

This paper is an attempt to study the channel dynamics in the area bounded by the foothills of the eastern Himalayas in the north, the Brahmaputra in the south and southeast and eastern side and the Subansiri River in the west. There are many streams in this region and only a few are perennial. There are two major anabranches of the Brahmaputra called Kharkutia Xuti and Charikoria. All of these makes it a very dynamic area. The analysis done in this paper is based on the remote sensing data and mapping of the channel planforms in GIS environment. The temporal trend of the change in channel planform has been produced. This study shows that, during the period from 1973 to 2013, the streams/rivers originating in the north have experienced a reduction in the total length. The other most important result is that even though the western edge of Majuli Island is eroding faster there is a formation of a larger island in between Charikoria and Brahmaputra, that comprises of Majuli island and parts of Dhakuakhana subdivision of Lakhimpur District along the south of Charikoria river. The field study shows that the Kharkutia Xuti, that divides Majuli from Dhakuakhana, do not experience any flow from the Brahmaputra for the major portion of the year and Charikoria has developed as a major anabranch of the Brahmaputra.

Keywords: channel dynamics, Brahmaputra river, Majuli Island, sinuosity

Procedia PDF Downloads 124
25730 Rapid Evidence Remote Acquisition in High-Availability Server and Storage System for Digital Forensic to Unravel Academic Crime

Authors: Bagus Hanindhito, Fariz Azmi Pratama, Ulfah Nadiya

Abstract:

Nowadays, digital system including, but not limited to, computer and internet have penetrated the education system widely. Critical information such as students’ academic records is stored in a server off- or on-campus. Although several countermeasures have been taken to protect the vital resources from outsider attack, the defense from insiders threat is not getting serious attention. At the end of 2017, a security incident that involved academic information system in one of the most respected universities in Indonesia affected not only the reputation of the institution and its academia but also academic integrity in Indonesia. In this paper, we will explain our efforts in investigating this security incident where we have implemented a novel rapid evidence remote acquisition method in high-availability server and storage system thus our data collection efforts do not disrupt the academic information system and can be conducted remotely minutes after incident report has been received. The acquired evidence is analyzed during digital forensic by constructing the model of the system in an isolated environment which allows multiple investigators to work together. In the end, the suspect is identified as a student (insider), and the investigation result is used by prosecutors to charge the suspect as an academic crime.

Keywords: academic information system, academic crime, digital forensic, high-availability server and storage, rapid evidence remote acquisition, security incident

Procedia PDF Downloads 153
25729 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance

Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun

Abstract:

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.

Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing

Procedia PDF Downloads 47
25728 Innovating Electronics Engineering for Smart Materials Marketing

Authors: Muhammad Awais Kiani

Abstract:

The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.

Keywords: electronics engineering, smart materials, marketing, power management

Procedia PDF Downloads 59
25727 Preparation and Characterization of Hybrid Perovskite Enhanced with PVDF for Pressure Sensing

Authors: Mohamed E. Harb, Enas Moustafa, Shaker Ebrahim, Moataz Soliman

Abstract:

In this paper pressure detectors were synthesized and characterized using hybrid perovskite/PVDF composites as an active layer. Methylammonium lead iodide (MAPbI₃) was synthesized from methylammonium iodide (MAI) (CH₃NH₃I) and lead iodide (PbI₂). Composites of perovskite/PVDF using different weight ratio were prepared as the active material. PVDF with weights percentages of 6%, 8%, and 10% was used. All prepared materials were investigated by x-ray diffraction (XRD), Fourier transforms infrared spectrum (FTIR) and scanning electron microscopy (SEM). A Versastat 4 Potentiostat Galvanostat instrument was used to perform the current-voltage characteristics of the fabricated sensors. The pressure sensors exhibited a voltage increase with applying different forces. Also, the current-voltage characteristics (CV) showed different effects with applying forces. So, the results showed a good pressure sensing performance.

Keywords: perovskite semiconductor, hybrid perovskite, PVDF, Pressure sensing

Procedia PDF Downloads 208
25726 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 147
25725 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection

Authors: Sumei Cai, Hong Li

Abstract:

Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.

Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process

Procedia PDF Downloads 119
25724 The Impact of Social Interaction, Wellbeing and Mental Health on Student Achievement During COVID-19 Lockdown in Saudi Arabia

Authors: Shatha Ahmad Alharthi

Abstract:

Prior research suggests that reduced social interaction can negatively affect well-being and impair mental health (e.g., depression and anxiety), resulting in lower academic performance. The COVID-19 pandemic has significantly limited social interaction among Saudi Arabian school children since the government closed schools and implemented lockdown restrictions to reduce the spread of the disease. These restrictions have resulted in prolonged remote learning for middle school students with unknown consequences for perceived academic performance, mental health, and well-being. This research project explores how middle school Saudi students’ current remote learning practices affect their mental health (e.g., depression and anxiety) and well-being during the lockdown. Furthermore, the study will examine the association between social interaction, mental health, and well-being pertaining to students’ perceptions of their academic achievement. Research findings could lead to a better understanding of the role of lockdown on depression, anxiety, well-being and perceived academic performance. Research findings may also inform policy-makers or practitioners (e.g., teachers and school leaders) about the importance of facilitating increased social interactions in remote learning situations and help to identify important factors to consider when seeking to re-integrate students into a face-to-face classroom setting. Potential implications for future educational research include exploring remote learning interventions targeted at bolstering students’ mental health and academic achievement during periods of remote learning.

Keywords: depression, anxiety, academic performance, social interaction

Procedia PDF Downloads 119
25723 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 63
25722 Design and Implementation of Remote Control Application for Elderly People Who Live Alone

Authors: Cristina Nieves Perdomo Delgado

Abstract:

The study consists of the design and use of an application for cell phones called “Me Cuido” that consists of remote control of elderly people who live alone with their families. The objective of the study is to analyze the usability of the application by 40-year-olds using the Questionnaire for User Interaction Satisfaction (QUIS) method. The results highlight that the application has a design adapted to the elderly and that it is easy to use and understand.

Keywords: design, assistive technology, elderly people, independence

Procedia PDF Downloads 251
25721 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network

Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo

Abstract:

Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.

Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network

Procedia PDF Downloads 352
25720 A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image

Authors: Yu-Cheng Chen, Tzu-Ping Lin, Feng-Yi Lin, Chih-Yu Chen

Abstract:

Due to the urban heat island effect caused by highly development of city, the heat stress increased in recent year rapidly. Resulting in a sharp raise of the energy used in urban area. The heat stress during summer time exacerbated the usage of air conditioning and electric equipment, which caused more energy consumption and anthropogenic heat. Therefore, an accurate and simple method to measure energy used in urban area can be helpful for the architectures and urban planners to develop better energy efficiency goals. This research applies the combination of airborne LiDAR data and thermal imager to provide an innovate method to estimate energy consumption. Owing to the high resolution of remote sensing data, the accurate current volume and total floor area and the surface temperature of building derived from LiDAR and thermal imager can be herein obtained to predict energy used. In the estimate process, the LiDAR data will be divided into four type of land cover which including building, road, vegetation, and other obstacles. In this study, the points belong to building were selected to overlay with the land use information; therefore, the energy consumption can be estimated precisely with the real value of total floor area and energy use index for different use of building. After validating with the real energy used data from the government, the result shows the higher building in high development area like commercial district will present in higher energy consumption, caused by the large quantity of total floor area and more anthropogenic heat. Furthermore, because of the surface temperature can be warm up by electric equipment used, this study also applies the thermal image of building to find the hot spots of energy used and make the estimation method more complete.

Keywords: urban heat island, urban planning, LiDAR, thermal imager, energy consumption

Procedia PDF Downloads 239
25719 Spatial Analysis of the Impact of City Developments Degradation of Green Space in Urban Fringe Eastern City of Yogyakarta Year 2005-2010

Authors: Pebri Nurhayati, Rozanah Ahlam Fadiyah

Abstract:

In the development of the city often use rural areas that can not be separated from the change in land use that lead to the degradation of urban green space in the city fringe. In the long run, the degradation of green open space this can impact on the decline of ecological, psychological and public health. Therefore, this research aims to (1) determine the relationship between the parameters of the degradation rate of urban development with green space, (2) develop a spatial model of the impact of urban development on the degradation of green open space with remote sensing techniques and Geographical Information Systems in an integrated manner. This research is a descriptive research with data collection techniques of observation and secondary data . In the data analysis, to interpret the direction of urban development and degradation of green open space is required in 2005-2010 ASTER image with NDVI. Of interpretation will generate two maps, namely maps and map development built land degradation green open space. Secondary data related to the rate of population growth, the level of accessibility, and the main activities of each city map is processed into a population growth rate, the level of accessibility maps, and map the main activities of the town. Each map is used as a parameter to map the degradation of green space and analyzed by non-parametric statistical analysis using Crosstab thus obtained value of C (coefficient contingency). C values were then compared with the Cmaximum to determine the relationship. From this research will be obtained in the form of modeling spatial map of the City Development Impact Degradation Green Space in Urban Fringe eastern city of Yogyakarta 2005-2010. In addition, this research also generate statistical analysis of the test results of each parameter to the degradation of green open space in the Urban Fringe eastern city of Yogyakarta 2005-2010.

Keywords: spatial analysis, urban development, degradation of green space, urban fringe

Procedia PDF Downloads 314
25718 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 362
25717 Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns

Authors: Joel F. Campbell, Bing Lin, Michael Obland, Susan Kooi, Tai-Fang Fan, Byron Meadows, Edward Browell, Wayne Erxleben, Doug McGregor, Jeremy Dobler, Sandip Pal, Christopher O'Dell, Ken Davis

Abstract:

The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs.

Keywords: CO₂ measurement, IMCW, CW lidar, laser spectroscopy

Procedia PDF Downloads 164
25716 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study

Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.

Keywords: optimum energy systems, remote electrification, renewable energy, wind turbine systems

Procedia PDF Downloads 404
25715 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 150
25714 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)

Authors: Emmanuel Ekwueme, Anwar Ali

Abstract:

As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.

Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy

Procedia PDF Downloads 17
25713 The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa

Authors: P. M. Kundu, L. R. Singo, J. O. Odiyo

Abstract:

Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment.

Keywords: catchment, digital elevation model, hydrological model, routing, runoff

Procedia PDF Downloads 567
25712 Leveraging Remote Assessments and Central Raters to Optimize Data Quality in Rare Neurodevelopmental Disorders Clinical Trials

Authors: Pamela Ventola, Laurel Bales, Sara Florczyk

Abstract:

Background: Fully remote or hybrid administration of clinical outcome measures in rare neurodevelopmental disorders trials is increasing due to the ongoing pandemic and recognition that remote assessments reduce the burden on families. Many assessments in rare neurodevelopmental disorders trials are complex; however, remote/hybrid trials readily allow for the use of centralized raters to administer and score the scales. The use of centralized raters has many benefits, including reducing site burden; however, a specific impact on data quality has not yet been determined. Purpose: The current study has two aims: a) evaluate differences in data quality between administration of a standardized clinical interview completed by centralized raters compared to those completed by site raters and b) evaluate improvement in accuracy of scoring standardized developmental assessments when scored centrally compared to when scored by site raters. Methods: For aim 1, the Vineland-3, a widely used measure of adaptive functioning, was administered by site raters (n= 52) participating in one of four rare disease trials. The measure was also administered as part of two additional trials that utilized central raters (n=7). Each rater completed a comprehensive training program on the assessment. Following completion of the training, each clinician completed a Vineland-3 with a mock caregiver. Administrations were recorded and reviewed by a neuropsychologist for administration and scoring accuracy. Raters were able to certify for the trials after demonstrating an accurate administration of the scale. For site raters, 25% of each rater’s in-study administrations were reviewed by a neuropsychologist for accuracy of administration and scoring. For central raters, the first two administrations and every 10th administration were reviewed. Aim 2 evaluated the added benefit of centralized scoring on the accuracy of scoring of the Bayley-3, a comprehensive developmental assessment widely used in rare neurodevelopmental disorders trials. Bayley-3 administrations across four rare disease trials were centrally scored. For all administrations, the site rater who administered the Bayley-3 scored the scale, and a centralized rater reviewed the video recordings of the administrations and also scored the scales to confirm accuracy. Results: For aim 1, site raters completed 138 Vineland-3 administrations. Of the138 administrations, 53 administrations were reviewed by a neuropsychologist. Four of the administrations had errors that compromised the validity of the assessment. The central raters completed 180 Vineland-3 administrations, 38 administrations were reviewed, and none had significant errors. For aim 2, 68 administrations of the Bayley-3 were reviewed and scored by both a site rater and a centralized rater. Of these administrations, 25 had errors in scoring that were corrected by the central rater. Conclusion: In rare neurodevelopmental disorders trials, sample sizes are often small, so data quality is critical. The use of central raters inherently decreases site burden, but it also decreases rater variance, as illustrated by the small team of central raters (n=7) needed to conduct all of the assessments (n=180) in these trials compared to the number of site raters (n=53) required for even fewer assessments (n=138). In addition, the use of central raters dramatically improves the quality of scoring the assessments.

Keywords: neurodevelopmental disorders, clinical trials, rare disease, central raters, remote trials, decentralized trials

Procedia PDF Downloads 174
25711 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 210
25710 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 167
25709 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study

Authors: Hamilton V. Niculescu

Abstract:

This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.

Keywords: automation, communication, ICT, renewables

Procedia PDF Downloads 113
25708 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 347
25707 Internet of Things Applications on Supply Chain Management

Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca

Abstract:

The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management

Procedia PDF Downloads 426
25706 Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing

Authors: Kusuma Urs M. B., Navakant Bhat, Vinayak B. Kamble

Abstract:

Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors.

Keywords: gas sensing, heterostructure, metal oxide semiconductor, space charge region

Procedia PDF Downloads 132
25705 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach

Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini

Abstract:

Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.

Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region

Procedia PDF Downloads 122
25704 Applied Spatial Mapping and Monitoring of Illegal Landfills for Deprived Urban Areas in Romania

Authors: Șercăianu Mihai, Aldea Mihaela, Iacoboaea Cristina, Luca Oana, Nenciu Ioana

Abstract:

The rise and mitigation of unauthorized illegal waste dumps are a significant global issue within waste management ecosystems, impacting disadvantaged communities. Globally, including in Romania, many individuals live in houses without legal recognition, lacking ownership or construction permits, in areas known as "informal settlements." An increasing number of regions and cities in Romania are struggling to manage their illegal waste dumps, especially in the context of increasing poverty and lack of regulation related to informal settlements. One such informal settlement is located at the end of Bistra Street in Câlnic, within the Reșița Municipality of Caras Severin County. The article presents a case study that focuses on employing remote sensing techniques and spatial data to monitor and map illegal waste practices, with subsequent integration into a geographic information system tailored for the Reșița community. In addition, the paper outlines the steps involved in devising strategies aimed at enhancing waste management practices in disadvantaged areas, aligning with the shift toward a circular economy. Results presented in the paper contain a spatial mapping and visualization methodology calibrated with in situ data collection applicable for identifying illegal landfills. The emergence and neutralization of illegal dumps pose a challenge in the field of waste management. These approaches, which prove effective where conventional solutions have failed, need to be replicated and adopted more wisely.

Keywords: informal settlements, GIS, waste dumps, waste management, monitoring

Procedia PDF Downloads 88
25703 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.

Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data

Procedia PDF Downloads 402
25702 Identifying the Phases of Indian Agriculture Towards Desertification: An Introspect of Karnataka State, India

Authors: Arun Das

Abstract:

Indian agriculture is acclaimed from the dates of Indus civilization (2500 BC). Since this time until the day, there were tremendous expansion in terms of space and technology has taken place. Abrupt growth in technology took place past one and half century. Consequent to this development, the land which was brought under agriculture in the initial stages of introducing agriculture for the first time, that land is not possessing the same physical condition. Either it has lost the productive capacity or modified into semi agriculture land. On the grounds of its capacity and interwoven characteristics seven phases of agriculture scenario has been identified. Most of the land is on the march of desertification. Identifying the stages and the phase of the agriculture scenario is most relevant from the point of view of food security at regional, national and at global level. Secondly decisive measure can put back the degenerating environmental condition into arrest. GIS and Remote sensing applications have been used to identify the phases of agriculture.

Keywords: agriculture phases, desertification, deforestation, foods security, transmigration

Procedia PDF Downloads 433