Search results for: quantile function model
19840 Financial Inclusion for Inclusive Growth in an Emerging Economy
Authors: Godwin Chigozie Okpara, William Chimee Nwaoha
Abstract:
The paper set out to stress on how financial inclusion index could be calculated and also investigated the impact of inclusive finance on inclusive growth in an emerging economy. In the light of these objectives, chi-wins method was used to calculate indexes of financial inclusion while co-integration and error correction model were used for evaluation of the impact of financial inclusion on inclusive growth. The result of the analysis revealed that financial inclusion while having a long-run relationship with GDP growth is an insignificant function of the growth of the economy. The speed of adjustment is correctly signed and significant. On the basis of these results, the researchers called for tireless efforts of government and banking sector in promoting financial inclusion in developing countries.Keywords: chi-wins index, co-integration, error correction model, financial inclusion
Procedia PDF Downloads 65319839 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 32619838 The Predictive Implication of Executive Function and Language in Theory of Mind Development in Preschool Age Children
Authors: Michael Luc Andre, Célia Maintenant
Abstract:
Theory of mind is a milestone in child development which allows children to understand that others could have different mental states than theirs. Understanding the developmental stages of theory of mind in children leaded researchers on two Connected research problems. In one hand, the link between executive function and theory of mind, and on the other hand, the relationship of theory of mind and syntax processing. These two lines of research involved a great literature, full of important results, despite certain level of disagreement between researchers. For a long time, these two research perspectives continue to grow up separately despite research conclusion suggesting that the three variables should implicate same developmental period. Indeed, our goal was to study the relation between theory of mind, executive function, and language via a unique research question. It supposed that between executive function and language, one of the two variables could play a critical role in the relationship between theory of mind and the other variable. Thus, 112 children aged between three and six years old were recruited for completing a receptive and an expressive vocabulary task, a syntax understanding task, a theory of mind task, and three executive function tasks (inhibition, cognitive flexibility and working memory). The results showed significant correlations between performance on theory of mind task and performance on executive function domain tasks, except for cognitive flexibility task. We also found significant correlations between success on theory of mind task and performance in all language tasks. Multiple regression analysis justified only syntax and general abilities of language as possible predictors of theory of mind performance in our preschool age children sample. The results were discussed in the perspective of a great role of language abilities in theory of mind development. We also discussed possible reasons that could explain the non-significance of executive domains in predicting theory of mind performance, and the meaning of our results for the literature.Keywords: child development, executive function, general language, syntax, theory of mind
Procedia PDF Downloads 6419837 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction
Authors: Rajendra Kumar
Abstract:
We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model
Procedia PDF Downloads 37419836 Jensen's Inequality and M-Convex Functions
Authors: Yamin Sayyari
Abstract:
In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.Keywords: Jensen's inequality, m-convex function, Convex function, Inequality
Procedia PDF Downloads 14519835 Socio-Psychological Significance of Vandalism in the Urban Environment: Destruction, Modernization, Communication
Authors: Olga Kruzhkova, Irina Vorobyeva, Roman Porozov
Abstract:
Vandalism is a common phenomenon, but its definition is still not clearly defined. In the public sense, vandalism is the blatant cases of pogroms in cemeteries, destruction of public places (regardless of whether these actions are authorized), damage to significant objects of culture and history (monuments, religious buildings). From a legal point of view, only such an act can be called vandalism, which is aimed at 'desecrating buildings or other structures, damaging property on public transport or in other public places'. The key here is the notion of public property that is being damaged. In addition, the principal is the semantics of messages, expressed in a kind of sign system (drawing, inscription, symbol), which initially threatens public order, the calmness of citizens, public morality. Because of this, the legal qualification of vandalism doesn’t include a sufficiently wide layer of environmental destructions that are common in modern urban space (graffiti and other damage to private property, broken shop windows, damage to entrances and elevator cabins), which in ordinary consciousness are seen as obvious facts of vandalism. At the same time, the understanding of vandalism from the position of psychology implies an appeal to the question of the limits of the activity of the subject of vandalism and his motivational basis. Also recently, the discourse on the positive meaning of some forms of vandalism (graffiti, street-art, etc.) has been activated. But there is no discussion of the role and significance of vandalism in public and individual life, although, like any socio-cultural and socio-psychological phenomenon, vandalism is not groundless and meaningless. Our aim of the study was to identify and describe the functions of vandalism as a socio-cultural and socio-psychological phenomenon of the life of the urban community, as well as personal determinants of its manifestations. The study was conducted in the spatial environment of the Russian megalopolis (Ekaterinburg) by photographing visual results of vandal acts (6217 photos) with subsequent trace-assessment and image content analysis, as well as diagnostics of personal characteristics and motivational basis of vandal activity of possible subjects of vandalism among youth. The results of the study allowed to identify the functions of vandalism at the socio-environmental and individual-subjective levels. The socio-environmental functions of vandalism include the signaling function, the function of preparing of social changes, the constructing function, and the function of managing public moods. The demonstrative-protest function, the response function, the refund function, and the self-expression function are assigned to the individual-subjective functions of vandalism. A two-dimensional model of vandal functions has been formed, where functions are distributed in the spaces 'construction reconstruction', 'emotional regulation/moral regulation'. It is noted that any function of vandal activity at the individual level becomes a kind of marker of 'points of tension' at the social and environmental level. Acknowledgment: The research was supported financially by Russian Science Foundation, (Project No. 17-18-01278).Keywords: destruction, urban environment, vandal behavior, vandalism, vandalism functions
Procedia PDF Downloads 20019834 Modeling of Building a Conceptual Scheme for Multimodal Freight Transportation Information System
Authors: Gia Surguladze, Nino Topuria, Lily Petriashvili, Giorgi Surguladze
Abstract:
Modeling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA – Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. The software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.Keywords: seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA
Procedia PDF Downloads 43119833 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function
Authors: Ahmed Noor Al-Qayyim
Abstract:
During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification
Procedia PDF Downloads 34819832 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 25019831 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry
Abstract:
In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming
Procedia PDF Downloads 65019830 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost
Authors: Yuan-Jye Tseng, Jia-Shu Li
Abstract:
To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.
Keywords: design for supply chain, design evaluation, functional design, Kansei design, fuzzy analytic network process, technique for order preference by similarity to ideal solution
Procedia PDF Downloads 31819829 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74319828 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images
Authors: Jie Huo, Jonathan Wu
Abstract:
Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization
Procedia PDF Downloads 33619827 Description of Decision Inconsistency in Intertemporal Choices and Representation of Impatience as a Reflection of Irrationality: Consequences in the Field of Personalized Behavioral Finance
Authors: Roberta Martino, Viviana Ventre
Abstract:
Empirical evidence has, over time, confirmed that the behavior of individuals is inconsistent with the descriptions provided by the Discounted Utility Model, an essential reference for calculating the utility of intertemporal prospects. The model assumes that individuals calculate the utility of intertemporal prospectuses by adding up the values of all outcomes obtained by multiplying the cardinal utility of the outcome by the discount function estimated at the time the outcome is received. The trend of the discount function is crucial for the preferences of the decision maker because it represents the perception of the future, and its trend causes temporally consistent or temporally inconsistent preferences. In particular, because different formulations of the discount function lead to various conclusions in predicting choice, the descriptive ability of models with a hyperbolic trend is greater than linear or exponential models. Suboptimal choices from any time point of view are the consequence of this mechanism, the psychological factors of which are encapsulated in the discount rate trend. In addition, analyzing the decision-making process from a psychological perspective, there is an equivalence between the selection of dominated prospects and a degree of impatience that decreases over time. The first part of the paper describes and investigates the anomalies of the discounted utility model by relating the cognitive distortions of the decision-maker to the emotional factors that are generated during the evaluation and selection of alternatives. Specifically, by studying the degree to which impatience decreases, it’s possible to quantify how the psychological and emotional mechanisms of the decision-maker result in a lack of decision persistence. In addition, this description presents inconsistency as the consequence of an inconsistent attitude towards time-delayed choices. The second part of the paper presents an experimental phase in which we show the relationship between inconsistency and impatience in different contexts. Analysis of the degree to which impatience decreases confirms the influence of the decision maker's emotional impulses for each anomaly in the utility model discussed in the first part of the paper. This work provides an application in the field of personalized behavioral finance. Indeed, the numerous behavioral diversities, evident even in the degrees of decrease in impatience in the experimental phase, support the idea that optimal strategies may not satisfy individuals in the same way. With the aim of homogenizing the categories of investors and to provide a personalized approach to advice, the results proven in the experimental phase are used in a complementary way with the information in the field of behavioral finance to implement the Analytical Hierarchy Process model in intertemporal choices, useful for strategic personalization. In the construction of the Analytic Hierarchy Process, the degree of decrease in impatience is understood as reflecting irrationality in decision-making and is therefore used for the construction of weights between anomalies and behavioral traits.Keywords: analytic hierarchy process, behavioral finance, financial anomalies, impatience, time inconsistency
Procedia PDF Downloads 6819826 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 17119825 Proposal of Design Method in the Semi-Acausal System Model
Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented
Procedia PDF Downloads 48519824 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 11219823 Conceptual Perimeter Model for Estimating Building Envelope Quantities
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Building girth is important in building economics and mostly used in quantities take-off of various cost items. Literature suggests that the use of conceptual quantities can improve the accuracy of cost models. Girth or perimeter of a building can be used to estimate conceptual quantities. Hence, the current paper aims to model the perimeter-area function of buildings shapes for use at the conceptual design stage. A detailed literature review on existing building shape indexes was carried out. An empirical approach was used to study the relationship between area and the shortest length of a four-sided orthogonal polygon. Finally, a mathematical approach was used to establish the observed relationships. The empirical results obtained were in agreement with the mathematical model developed. A new equation termed “conceptual perimeter equation” is proposed. The equation can be used to estimate building envelope quantities such as external wall area, external finishing area and scaffolding area before sketch or detailed drawings are prepared.Keywords: building envelope, building shape index, conceptual quantities, cost modelling, girth
Procedia PDF Downloads 34319822 Semiparametric Regression Of Truncated Spline Biresponse On Farmer Loyalty And Attachment Modeling
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Regression analysis is a statistical method that is able to describe and predict causal relationships between individuals. Not all relationships have a known curve shape; often, there are relationship patterns that cannot be known in the shape of the curve; besides that, a cause can have an impact on more than one effect, so that between effects can also have a close relationship in it. Regression analysis that can be done to find out the relationship can be brought closer to the semiparametric regression of truncated spline biresponse. The purpose of this study is to examine the function estimator and determine the best model of truncated spline biresponse semiparametric regression. The results of the secondary data study showed that the best model with the highest order of quadratic and a maximum of two knots with a Goodness of fit value in the form of Adjusted R2 of 88.5%.Keywords: biresponse, farmer attachment, farmer loyalty, truncated spline
Procedia PDF Downloads 3719821 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System
Authors: Gak-Gyu Kim, Won Il Jung
Abstract:
According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain
Procedia PDF Downloads 25419820 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish
Authors: Pramod K. Prabhakar, Prem P. Srivastav
Abstract:
Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation
Procedia PDF Downloads 23419819 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 35419818 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides
Authors: V. Keim, J. Spachtholz, J. Hammer
Abstract:
The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation
Procedia PDF Downloads 21519817 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene
Authors: Aman Sharma, Sonali Sengupta
Abstract:
The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene
Procedia PDF Downloads 18219816 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function
Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi
Abstract:
To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.Keywords: melon, discriminant analysis, genetic components, yield, selection
Procedia PDF Downloads 33419815 Analytical Design of Fractional-Order PI Controller for Decoupling Control System
Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh
Abstract:
The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system
Procedia PDF Downloads 33119814 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 34619813 Scheduling Method for Electric Heater in HEMS considering User’s Comfort
Authors: Yong-Sung Kim, Je-Seok Shin, Ho-Jun Jo, Jin-O Kim
Abstract:
Home Energy Management System (HEMS) which makes the residential consumers contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it also represents impacts of the comfort level on the scheduling result.Keywords: load scheduling, usage pattern, user’s comfort, copula function, branch and bound, electric heater
Procedia PDF Downloads 58519812 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping
Authors: Jose D. Herrera, Mario A. Rios
Abstract:
This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values
Procedia PDF Downloads 59219811 Comparison of Receiver Operating Characteristic Curve Smoothing Methods
Authors: D. Sigirli
Abstract:
The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve
Procedia PDF Downloads 152