Search results for: plasma protein electrophoresis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3374

Search results for: plasma protein electrophoresis

2864 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 459
2863 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk

Authors: Radhika Jain, Sangeeta Goomer

Abstract:

In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.

Keywords: extrusion, NDpCal%, protein quality, wadi

Procedia PDF Downloads 224
2862 Influence of Surface Wettability on Imbibition Dynamics of Protein Solution in Microwells

Authors: Himani Sharma, Amit Agrawal

Abstract:

Stability of the Cassie and Wenzel wetting states depends on intrinsic contact angle and geometric features on a surface that was exploited in capturing biofluids in microwells. However, the mechanism of imbibition of biofluids in the microwells is not well implied in terms of wettability of a substrate. In this work, we experimentally demonstrated filling dynamics in hydrophilic and hydrophobic microwells by protein solutions. Towards this, we utilized lotus leaf as a mold to fabricate microwells on a Polydimethylsiloxane (PDMS) surface. Lotus leaf containing micrometer-sized blunt-conical shaped pillars with a height of 8-15 µm and diameter of 3-8 µm were transferred on to PDMS. Furthermore, PDMS surface was treated with oxygen plasma to render the hydrophilic nature. A 10µL droplets containing fluorescein isothiocyanate (FITC) - labelled bovine serum albumin (BSA) were rested on both hydrophobic (θa = 108o, where θa is the apparent contact angle) and hydrophilic (θa = 60o) PDMS surfaces. A time-dependent fluorescence microscopy was conducted on these modified PDMS surfaces by recording the fluorescent intensity over a 5 minute period. It was observed that, initially (at t=1 min) FITC-BSA was accumulated on the periphery of both hydrophilic and hydrophobic microwells due to incomplete penetration of liquid-gas meniscus. This deposition of FITC-BSA on periphery of microwell was not changed with time for hydrophobic surfaces, whereas, a complete filling was occurred in hydrophilic microwells (at t=5 mins). This attributes to a gradual movement of three-phase contact line along the vertical surface of the hydrophilic microwells as compared to stable pinning in the hydrophobic microwells as confirmed by Surface Evolver simulations. In addition, if the cavities are presented on hydrophobic surfaces, air bubbles will be trapped inside the cavities once the aqueous solution is placed over these surfaces, resulting in the Cassie-Baxter wetting state. This condition hinders trapping of proteins inside the microwells. Thus, it is necessary to impart hydrophilicity to the microwell surfaces so as to induce the Wenzel state, such that, an entire solution will be fully in contact with the walls of microwells. Imbibition of microwells by protein solutions was analyzed in terms fluorescent intensity versus time. The present work underlines the importance of geometry of microwells and surface wettability of substrate in wetting and effective capturing of solid sub-phases in biofluids.

Keywords: BSA, microwells, surface evolver, wettability

Procedia PDF Downloads 198
2861 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 468
2860 Microstructures and Mechanical Property of ti6al4v - a Comparison between Selective Laser Melting, Electron Beam Melting and Spark Plasma Sintering

Authors: Javad Karimi, Prashanth Konda Gokuldoss

Abstract:

Microstructural inhomogeneity in additively manufactured materials affects the material properties. The present study aims in minimizing such microstructural inhomogeneity in Ti6Al4V alloy fabricated using selective laser melting (SLM) from the gas atomized powder. A detailed and systematic study of the effect of remelting on the microstructure and mechanical properties of Ti6Al4V manufactured by SLM was compared with electron beam melting and spark plasma sintering.

Keywords: additive manufacturing, selective laser melting, Ti6Al4V, microstructure

Procedia PDF Downloads 167
2859 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 291
2858 Quality of Chilled Indigenous Ram Semen Using Multi-Species Skim Milk Based Extenders

Authors: Asaduzzaman Rimon, Pankaj Kumar Jha, Abdullah Al Mansur, Mohammad Mofizul Islam, Nasrin Sultana Juyena, Farida Yeasmin Bari

Abstract:

This study was conducted to determine the effects of multi-species skim milk based extenders on sperm quality at 5ºC with the advancement of preservation time. Altogether forty ejaculates, 8 ejaculates for each of the 5 home-made semen extenders: cow skim milk (CSM), goat skim milk (GSM), sheep skim milk (SSM), buffalo skim milk (BSM) and commercial dried skim milk (CDSM) were examined for motility, plasma membrane integrity and normal morphology % of sperm at 0, 24, 48, 72, 96 and 120 hours, respectively. Sperm motility was significantly decreased (P < 0.05) with the increase of preservation time. There were no significant difference in motility % among CSM (84.0±1.4, 82.3±2.1), GSM (84.5±1.0, 82.5±0.6) and CDSM (85.0±80.3±1.3) extenders at 0 and 24 hours, respectively. However, the motility in GSM extender was significantly higher than BSM, SSM and CDSM extender at 48, 72, 96 and 120 hours. The plasma membrane integrity % at 0 hour had no significant difference among the extenders. But, the plasma membrane integrity % in GSM (84.3±0.9, 81.8±1.3, 78.0±2.2, 74.8±0.5, 72.0±1.4) and CSM (82.8±0.5, 80.8±1.0, 78.0±1.4, 73.5±1.7, 70.3±0.5) extenders were significantly higher than BSM (81.0±1.4, 76.3±2.5, 72.5±1.7, 63.8±2.5, 54.0±4.6), SSM (78.5±1.5, 75.0±1.6, 71.5±2.4, 64.3±1.7, 56.5±2.4) and CDSM extenders (78.3±2.4, 75.8±3.9, 72.5±3.3, 64.8±1.0, 60.5±3.3) at 24, 48, 72, 96 and 120 hours, respectively. The sperm morphology % had no significant difference at 0 hour among the extenders but were significantly higher in GSM (83.0±0.8, 81.3±1.5, 79.3±1.3, 73.0±2.2, 70.3±1.3) and CSM (81.5±1.7, 79.3±1.5, 75.8±1.5, 70.3±1.3, 66.3±1.5) than BSM (79.0±1.2, 75.0±1.4, 69.5±1.7, 64.5±3.1, 56.8±2.2), SSM (79.8±1.3, 76.8±2.1, 71.3±3.0, 66.0±2.7, 60.3±4.5) and CDSM (80.0±1.6, 77.0±2.2, 72.0±2.5, 66.3±2.5, 62.0±4.0) extenders at 24, 48, 72, 96 and 120 hours, respectively. The motility, plasma membrane integrity and normal morphology % of sperm had shown no significant difference between GSM and CSM but were found to be higher in GSM extenders. In the end, we concluded from the above study that the goat milk based extenders (GSM) had optimum sperm preserving quality. However, further studies are required to validate followed by fertility rate.

Keywords: chilled semen, indigenous ram, multi-species skim milk based extenders, preservation

Procedia PDF Downloads 421
2857 A Similarity/Dissimilarity Measure to Biological Sequence Alignment

Authors: Muhammad A. Khan, Waseem Shahzad

Abstract:

Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.

Keywords: alignment, distance, homology, mathematical model, phylogenetic tree

Procedia PDF Downloads 178
2856 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide

Authors: Gu Zhonghua

Abstract:

Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.

Keywords: waveguide, etch, control, silicon loss

Procedia PDF Downloads 414
2855 Technology of Thermal Spray Coating Machining

Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová

Abstract:

This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.

Keywords: coating, aerospace, plasma, grinding

Procedia PDF Downloads 555
2854 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition

Authors: F. Laatar, S. Ktifa, H. Ezzaouia

Abstract:

Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.

Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties

Procedia PDF Downloads 377
2853 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 508
2852 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 378
2851 Chemical Characterization and Antioxidant Capacity of Flour From Two Soya Bean Cultivars (Glycine Max)

Authors: Meziani Samira, Menadi Noreddine, Labga Lahouaria, Chenni Fatima Zohra, Toumi Asma

Abstract:

A comparative study between two varieties of soya beans was carried out in this work. The method consists of studying and proceeding to prepare a by-product (Flour) from two varieties of soybeans, a Chinese variety imported and marketed in Algeria. The chemical composition of ash, protein and fat was determined in this study. The minerals, namely potassium and sodium, were measured by flame spectrophotometer. In addition, the estimation of the polyphenol content and evaluation of the antioxidant activity Ferric Reducing Antioxidant Power assay (FRAP) f the methanol extracts of the flours were also carried out. The result revealed that soy flour from two cultivars, on average, contained 8% moisture, more than 50% protein, 1.58-1.87g fat, and 0.28-0.30g of ash. A slight difference was found for contents of 489 mg/ml of K + and 20 mg/ml of NA +. In addition, the phenolic content of the methanolic extracts gives a value of almost 37 mg EAG / g for both cultivars of soy flour. The estimated Reductive Antioxidant Iron (FRAP) potency of soy flour might be related to its polyphenol richness, which is similar to the variety of China. The flour Soya varieties tested contained a significant amount of protein and phenolic compounds with good antioxidant properties.

Keywords: soye beans, soya flour, protein, total polyphenols

Procedia PDF Downloads 90
2850 Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine

Authors: Alyaa Abdlwahab

Abstract:

Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania.

Keywords: ribosomal protein S4, DNA vaccine, Leishmania tropica, BALB\c

Procedia PDF Downloads 136
2849 The Role of Estradiol-17β and Type IV Collagen on the Regulation and Expression Level Of C-Erbb2 RNA and Protein in SKOV-3 Ovarian Cancer Cell Line

Authors: Merry Meryam Martgrita, Marselina Irasonia Tan

Abstract:

One of several aggresive cancer is cancer that overexpress c-erbB2 receptor along with the expression of estrogen receptor. Components of extracellular matrix play an important role to increase cancer cells proliferation, migration and invasion. Both components can affect cancer development by regulating the signal transduction pathways in cancer cells. In recent research, SKOV-3 ovarian cancer cell line, that overexpress c-erbB2 receptor was cultured on type IV collagen and treated with estradiol-17β, to reveal the role of both components on RNA and protein level of c-erbB2 receptor. In this research we found a modulation phenomena of increasing and decreasing of c-erbB2 RNA level and a stabilisation phenomena of c-erbB2 protein expression due to estradiol-17β and type IV collagen. It seemed that estradiol-17β has an important role to increase c-erbB2 transcription and the stability of c-erbB2 protein expression. Type IV collagen has an opposite role. It blocked c-erbB2 transcription when it bound to integrin receptor in SKOV-3 cells.

Keywords: c-erbB2, estradiol-17β, SKOV-3, type IV collagen

Procedia PDF Downloads 284
2848 Functional Significance of Qatari Camels Milk: Antioxidant Content and Antimicrobial Activity of Protein Fractions

Authors: Tahra ElObeid, Omnya Ahmed, Reem Al-Sharshani, Doaa Dalloul, Jannat Alnattei

Abstract:

Background: Camelus dormedarius camels are also called ‘the Arabian camels’ and are present in the desert area of North Africa and the Middle East. Recently, camel’s milk has a great attention globally because of their proteins and peptides that have been reported to be beneficial for the health and in the management of many diseases. Objectives: This study was designed to investigate the antioxidant, antimicrobial activity and to evaluate the total phenolic content of camel’s milk proteins in Qatar. Methods: Fresh two camel’s milk samples from Omani breed and called Muhajer (camel’s milk A and B) were collected on the 1st of the December. Both samples were from the same location Al- Shahaniyah, Doha, Qatar, but from different local private farms and feeding system. Camel’s milk A and B were defatted by centrifugation and their proteins were extracted by acid and thermal precipitation. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic compound (TPC) was evaluated by Folin-Ciocalteu reagent (FCR). On the other hand, the antimicrobial activity against eight different type of pathogenic bacteria was evaluated by disc diffusion method and the zone of inhibition was measured. Results: The of the total phenolic content of whole milk in both camel’s milk A and B were significantly the highest among the protein extracts. The % of the DPPH radical inhibition of casein protein in both camel’s milk A and B were significantly the highest among the protein extracts. In this study, there were marked changes in the antibacterial activity in the different camel milk protein extracts. All extracts showed bacterial overgrowth. Conclusion: The antioxidant activity of the camel milk protein extracts correlated to their unique phenolic compounds and bioactive protein peptides. The antimicrobial activity was not detected perhaps due to the technique, the quality, or the extraction method. Overall, camel's milk exhibits a high antioxidant activity, which is responsible for many health benefits besides the nutritional values.

Keywords: camels milk, antioxidant content, antimicrobial activity, proteins, Qatar

Procedia PDF Downloads 214
2847 Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand

Authors: Pirakorn Sukonthaman, Paphitchaya Temphattharachok, Warangkana Thammasanya, Kraichart Tantrakarnarpa, Tanongson Tientavorn

Abstract:

Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term.

Keywords: pesticides, plasma cholinesterase level, spraymen, agricultural workers

Procedia PDF Downloads 353
2846 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 310
2845 Adhesion of Sputtered Copper Thin Films Deposited on Flexible Substrates

Authors: Rwei-Ching Chang, Bo-Yu Su

Abstract:

Adhesion of copper thin films deposited on polyethylene terephthAdhesion of copper thin films deposited on polyethylene terephthalate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.alate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.

Keywords: flexible substrate, sputtering, adhesion, copper thin film

Procedia PDF Downloads 130
2844 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation

Authors: Medhanie Gebremedhin Gebru, Alex Schechter

Abstract:

Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².

Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation

Procedia PDF Downloads 144
2843 The Study of Platelet-Rich Plasma(PRP) on Wounds of OLEFT Rats Using Expression of MMP-2, MMP-9 mRNA

Authors: Ho Seong Shin

Abstract:

Introduction: A research in relation to wound healing also showed that platelet-rich plasma (PRP) was effective on normal tissue regeneration. Nonetheless, there is no evidence that when platelet-rich plasma was applied on diabetic wound, it normalize diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) expression to know the effect of PRP on diabetic wounds using Reverse transcription-polymerase chain reaction (RT-PCR) of MMP-2, MMP-9 mRNA. Materials and Methods: Platelet-rich plasma (PRP) was prepared from blood of 6 rats. The whole 120-mL was added immediately to an anticoagulant. Citrate phosphonate dextrose(CPD) buffer (0.15 mg CPDmL) in a ratio of 1 mL of CPD buffer to 5 mL of blood. The blood was then centrifuged at 220g for 20minutes. The supernatant was saved to produce fibrin glue. The participate containing PRP was used for second centrifugation at 480g for 20 minutes. The pellet from the second centrifugation was saved and diluted with supernatant until the platelet concentration became 900,000/μL. Twenty male, 4week-old OLETF rats were underwent operation; each rat had two wounds created on left and right sides. The each wound of left side was treated with PRP gel, the wound of right side was treated with physiologic saline gauze. Results: RT-PCR analysis; The levels of MMP-2 mRNA in PRP applied tissues were positively related to postwounding days, whereas MMP-2 mRNA expression in saline-applied tissues remained in 5day after treatment. MMP-9 mRNA was undetectable in saline-applied tissues for either tissue, except 3day after treatment. Following PRP-applied tissues, MMP-9 mRNA expression was detected, with maximal expression being seen at third day. The levels of MMP-9 mRNA in PRP applied tissues were reported high intensity of optical density related to saline applied tissues.

Keywords: diabetes, MMP-2, MMP-9, OLETF, PRP, wound healing MMP-9

Procedia PDF Downloads 273
2842 Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm

Authors: Ravinder Singh, Ankita Gurao, Saroj Bandhan, Sudhir Kumar Kashyap

Abstract:

The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein.

Keywords: beta defensin 3, bos taurus, docking, homology modeling

Procedia PDF Downloads 291
2841 Magnetic Bio-Nano-Fluids for Hyperthermia

Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak

Abstract:

Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.

Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron

Procedia PDF Downloads 413
2840 Analysis of Nutritional Value for Soybean Genotypes Grown in Lesotho

Authors: Motlatsi Eric Morojele, Moleboheng Patricia Lekota, Pulane Nkhabutlane, Motanyane Stanley Motake

Abstract:

Soybean was introduced in Lesotho to increase the spectrum of nutritious foods, especially protein, oil and carbohydrates. However, since then, determination of nutritional value has not been performed, hence this study. The objective of the study was to distinguish soybean genotypes on the basis of nutritive value. The experiment was laid out using a Randomized Complete Block Design with 27 treatments (genotypes) and three replications. Compound fertilizer 2:3:2 (22) was broadcasted over the experimental plot at the rate of 250kg ha-1. Dimensions of the main experimental plot were 135m long and 10m wide, with each sub-plot being 4m and 3.6m. Inter-row and intra-row spacing were 0.9m and 0.20m, respectively. Samples of seeds from each plot were taken to the laboratory to analyze protein content, ash, ca, mg, fiber, starch and ether extract. There were significant differences (P>0.05) among 28 soybean genotypes for protein content, acid detergent fiber, calcium, magnesium and ash. The soybean cultivars with the highest amount of protein were P48T48R, PAN 1663 and PAN 155R. High ADF content was expressed by PAN 1521R. LS 6868 exhibited the highest value of 0.788mg calcium, and the cultivars with the highest magnesium were NA 5509 with 1.306mg. PAN 1663, LCD 5.9, DM5302 RS and NS 6448R revealed higher nutritional values than other genotypes.

Keywords: genotypes, Lesotho, nutritive value, proximate analysis, soya-bean

Procedia PDF Downloads 25
2839 Salmonella Emerging Serotypes in Northwestern Italy: Genetic Characterization by Pulsed-Field Gel Electrophoresis

Authors: Clara Tramuta, Floris Irene, Daniela Manila Bianchi, Monica Pitti, Giulia Federica Cazzaniga, Lucia Decastelli

Abstract:

This work presents the results obtained by the Regional Reference Centre for Salmonella Typing (CeRTiS) in a retrospective study aimed to investigate, through Pulsed-field Gel Electrophoresis (PFGE) analysis, the genetic relatedness of emerging Salmonella serotypes of human origin circulating in North-West of Italy. Furthermore, the goal of this work was to create a Regional database to facilitate foodborne outbreak investigation and to monitor them at an earlier stage. A total of 112 strains, isolated from 2016 to 2018 in hospital laboratories, were included in this study. The isolates were previously identified as Salmonella according to standard microbiological techniques and serotyping was performed according to ISO 6579-3 and the Kaufmann-White scheme using O and H antisera (Statens Serum Institut®). All strains were characterized by PFGE: analysis was conducted according to a standardized PulseNet protocol. The restriction enzyme XbaI was used to generate several distinguishable genomic fragments on the agarose gel. PFGE was performed on a CHEF Mapper system, separating large fragments and generating comparable genetic patterns. The agarose gel was then stained with GelRed® and photographed under ultraviolet transillumination. The PFGE patterns obtained from the 112 strains were compared using Bionumerics version 7.6 software with the Dice coefficient with 2% band tolerance and 2% optimization. For each serotype, the data obtained with the PFGE were compared according to the geographical origin and the year in which they were isolated. Salmonella strains were identified as follow: S. Derby n. 34; S. Infantis n. 38; S. Napoli n. 40. All the isolates had appreciable restricted digestion patterns ranging from approximately 40 to 1100 kb. In general, a fairly heterogeneous distribution of pulsotypes has emerged in the different provinces. Cluster analysis indicated high genetic similarity (≥ 83%) among strains of S. Derby (n. 30; 88%), S. Infantis (n. 36; 95%) and S. Napoli (n. 38; 95%) circulating in north-western Italy. The study underlines the genomic similarities shared by the emerging Salmonella strains in Northwest Italy and allowed to create a database to detect outbreaks in an early stage. Therefore, the results confirmed that PFGE is a powerful and discriminatory tool to investigate the genetic relationships among strains in order to monitoring and control Salmonellosis outbreak spread. Pulsed-field gel electrophoresis (PFGE) still represents one of the most suitable approaches to characterize strains, in particular for the laboratories for which NGS techniques are not available.

Keywords: emerging Salmonella serotypes, genetic characterization, human strains, PFGE

Procedia PDF Downloads 105
2838 Expression Regulation of Membrane Protein by Codon Variation of Amino Acid at N-Terminal Region

Authors: Ahreum Choi, Otgontuya Tsogbadrakh, Kwang-Hwan Jung

Abstract:

Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied. These retinal-binding proteins have divided into two types. The type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. For type I rhodopsin, there are two main functions that are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is one of the microbial rhodopsin with main function as photo-sensory transduction. Although ASR is expressed fairly well in Escherichia coli, the expression level is relatively less compare to Proteorhodopsin. In this study, full length of ASR was used to test for the expression influence by codon usage in E. coli. Eight amino acids of codon at N-terminal part of ASR were changed randomly with designed primers, which allow 8,192 nucleotide different cases. The codon changes were screened for the preferable codons of each residue, which have given higher expression yield. Among those 57 selected mutations, there are 24 color-enhanced E. coli colonies that contain ASR proteins, and it showed better expression level than the wild type ASR codon usage. This strongly suggests that high codon usage of only partial N-terminal of protein can increase the expression level of whole protein.

Keywords: 7-transmembrane, all-trans retinal, rhodopsin, codon-usage, protein expression

Procedia PDF Downloads 180
2837 Pharmacokinetic Model of Warfarin and Its Application in Personalized Medicine

Authors: Vijay Kumar Kutala, Addepalli Pavani, M. Amresh Rao, Naushad Sm

Abstract:

In this study, we evaluated the impact of CYP2C9*2 and CYP2C9*3 variants on binding and hydroxylation of warfarin. In silico data revealed that warfarin forms two hydrogen bonds with protein backbone i.e. I205 and S209, one hydrogen bond with protein side chain i.e. T301 and stacking interaction with F100 in CYP2C9*1. In CYP2C9*2 and CYP2C9*3 variants, two hydrogen bonds with protein backbone are disrupted. In double variant, all the hydrogen bonds are disrupted. The distances between C7 of S-warfarin and Fe-O in CYP2C9*1, CYP2C9*2, CYP2C9*3 and CYP2C9*2/*3 were 5.81A°, 7.02A°, 7.43° and 10.07°, respectively. The glide scores (Kcal/mol) were -7.698, -7.380, -6.821 and -6.986, respectively. Increase in warfarin/7-hydroxy warfarin ratio was observed with increase in variant alleles. To conclude, CYP2C9*2 and CYP2C9*3 variants result in disruption of hydrogen bonding interactions with warfarin and longer distance between C7 and Fe-O thus impairing warfarin 7-hydroxylation due to lower binding affinity of warfarin.

Keywords: warfarin, CYP2C9 polymorphism, personalized medicine, in Silico

Procedia PDF Downloads 322
2836 A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response

Authors: Shiva Emami, Jenny Persson, Bengt Johansson Lindbom

Abstract:

Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS.

Keywords: Group A streptococcus, IgG2c, IFN-γ, protection

Procedia PDF Downloads 90
2835 Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis

Authors: Ravinder Singh, C Rajesh, Saroj Badhan, Shailendra Mishra, Ranjit Singh Kataria

Abstract:

Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1.

Keywords: Bubalus bubalis, comparative modelling, docking, heat shock protein

Procedia PDF Downloads 322