Search results for: performance based building design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42419

Search results for: performance based building design

41909 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 101
41908 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation

Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril

Abstract:

Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.

Keywords: dynamic response, passive control, performance test, seismic protection

Procedia PDF Downloads 158
41907 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 146
41906 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 103
41905 Incorporation of Safety into Design by Safety Cube

Authors: Mohammad Rajabalinejad

Abstract:

Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery.

Keywords: safety, safety cube, product, system, machinery, design

Procedia PDF Downloads 227
41904 Transforming Automotive Performance: The Role of Additive Manufacturing

Authors: Joaquin Ticzon, Christian Demition, Jaime Honra

Abstract:

Additive manufacturing (AM) or 3D printing has been one of the emerging trends present in various industries, particularly in prototyping. This review focuses on the impact of additive manufacturing on a motor vehicle's performance aiming to investigate potential advancements to further revolutionize the way parts are manufactured. One of the most common problems faced in the automotive industry is carbon footprint emissions from motor vehicles, which was stated to be remedied by lightweight; additively manufactured parts helped reduce these emissions due to weight reduction provided by additively manufactured parts. Composed of various techniques for AM as well as materials utilized during the manufacturing process, which differ in terms of the quality and performance it provides during its application on the final product. Given this, the generative design will not be discussed in such a detailed manner because the focus will revolve around the effects on the performance of a vehicle due to additively manufactured parts.

Keywords: additive manufacturing (AM), automotive, computer aided design (CAD), generative design

Procedia PDF Downloads 8
41903 A Review on the Necessities of Green Building in Bangladesh and Its Construction Process

Authors: Syeda Afsana Azad

Abstract:

Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building.

Keywords: Bangladesh, climate change, green building, green house effect

Procedia PDF Downloads 360
41902 High-Rise Building with PV Facade

Authors: Jiří Hirš, Jitka Mohelnikova

Abstract:

A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation.

Keywords: buildings, energy, PV façade, solar radiation

Procedia PDF Downloads 285
41901 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 341
41900 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings

Authors: Putul Haldar, Yogendra Singh, D. K. Paul

Abstract:

Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.

Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame

Procedia PDF Downloads 374
41899 Probabilistic Building Life-Cycle Planning as a Strategy for Sustainability

Authors: Rui Calejo Rodrigues

Abstract:

Building Refurbishing and Maintenance is a major area of knowledge ultimately dispensed to user/occupant criteria. The optimization of the service life of a building needs a special background to be assessed as it is one of those concepts that needs proficiency to be implemented. ISO 15686-2 Buildings and constructed assets - Service life planning: Part 2, Service life prediction procedures, states a factorial method based on deterministic data for building components life span. Major consequences result on a deterministic approach because users/occupants are not sensible to understand the end of components life span and so simply act on deterministic periods and so costly and resources consuming solutions do not meet global targets of planet sustainability. The estimation of 2 thousand million conventional buildings in the world, if submitted to a probabilistic method for service life planning rather than a deterministic one provide an immense amount of resources savings. Since 1989 the research team nowadays stating for CEES–Center for Building in Service Studies developed a methodology based on Montecarlo method for probabilistic approach regarding life span of building components, cost and service life care time spans. The research question of this deals with the importance of probabilistic approach of buildings life planning compared with deterministic methods. It is presented the mathematic model developed for buildings probabilistic lifespan approach and experimental data is obtained to be compared with deterministic data. Assuming that buildings lifecycle depends a lot on component replacement this methodology allows to conclude on the global impact of fixed replacements methodologies such as those on result of deterministic models usage. Major conclusions based on conventional buildings estimate are presented and evaluated under a sustainable perspective.

Keywords: building components life cycle, building maintenance, building sustainability, Montecarlo Simulation

Procedia PDF Downloads 193
41898 An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption

Authors: Nuruddeen Usman, Usman Mohammed Gidado

Abstract:

A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology.

Keywords: green building technology, construction, post construction, degradation

Procedia PDF Downloads 637
41897 JENOSYS: Application of a Web-Based Online Energy Performance Reporting Tool for Government Buildings in Malaysia

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Faiz Fadzil, Mohd Yusof Aizad Mukhtar

Abstract:

One of the areas that present an opportunity to reduce the national carbon emission is the energy management of public buildings. To our present knowledge, there is no easy-to-use and centralized mechanism that enables the government to monitor the overall energy performance, as well as the carbon footprint, of Malaysia’s public buildings. Therefore, the Public Works Department Malaysia, or PWD, has developed a web-based energy performance reporting tool called JENOSYS (JKR Energy Online System), which incorporates a database of utility account numbers acquired from the utility service provider for analysis and reporting. For test case purposes, 23 buildings under PWD were selected and monitored for their monthly energy performance (in kWh), carbon emission reduction (in tCO₂eq) and utility cost (in MYR), against the baseline. This paper demonstrates the simplicity with which buildings without energy metering can be monitored centrally and the benefits that can be accrued by the government in terms of building energy disclosure and concludes with the recommendation of expanding the system to all the public buildings in Malaysia.

Keywords: energy-efficient buildings, energy management systems, government buildings, JENOSYS

Procedia PDF Downloads 154
41896 A Critical Evaluation of Building Information Modelling in New Zealand: Deepening Our Understanding of the Benefits and Drawbacks

Authors: Garry Miller, Thomas Alexander, Cameron Lee

Abstract:

There is belief that Building Information Modelling (BIM) will improve performance of the New Zealand (NZ) Architecture, Engineering and Construction (AEC) sector, however, widespread use of BIM is yet to be seen. Previous research indicates there are many issues affecting the uptake of BIM in NZ; nevertheless the underlying benefits, drawbacks, and barriers preventing more widespread uptake are not fully understood. This investigation aimed to understand these factors more clearly and make suggestions on how to improve the uptake of BIM in NZ. Semi-structured interviews were conducted with a range of industry professionals to gather a qualitative understanding. Findings indicated the ability to incorporate better information into a BIM model could drive many benefits. However scepticism and lack of positive incentives in NZ are affecting its widespread use. This concluded that there is a need for the government to produce a number of BIM case studies and develop a set of BIM standards to resolve payment issues surrounding BIM use. This study provides useful information for those interested in BIM and members of government interested in improving the performance of the construction industry. This study may also be of interest to small, developed countries such as NZ where the level of BIM maturity is relatively low.

Keywords: BIM, New Zealand, AEC sector, building information modelling

Procedia PDF Downloads 506
41895 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects

Authors: Ayedh Alqahtani, Andrew Whyte

Abstract:

Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.

Keywords: building projects, capital cost, life cycle cost, maintenance costs, operation costs

Procedia PDF Downloads 534
41894 Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests

Authors: K. H. Yang, T. C. Yeh, P. S. Lu, F. C. Yang, T. Y. Wu, W. J. Sung

Abstract:

In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems.

Keywords: building hot smoke tests, performance-based smoke management system designs, full-scale experimental validation, tenable condition criteria

Procedia PDF Downloads 430
41893 Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders

Authors: A. Saccani, I. Lancellotti, E. Bursi

Abstract:

Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results.

Keywords: building materials, carbon fibres, fly ashes, geopolymers

Procedia PDF Downloads 146
41892 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 415
41891 Colors and Interiority - A Study on the Relationship of Colors and Interior Spaces

Authors: Mahwish Ghulam Rasool

Abstract:

The design of a space is a complex process that involves multiple stages, from conceptualization, identifying design problems to understanding the context, materiality, and functionality of the space. Out of all the design elements, color is one of the most dominant and expressive factors that affect the spatial dynamics of the interior space. Color affects aesthetic comfort in space and has a lasting impact on human perception and psychology. Using color as a tool for creating spatial experiences is a new paradigm. Color semantics in spaces are not only used for surface treatment or aesthetics, but it also has more powerful functional characteristics. As interior spaces are evolving and becoming experiential with each decade, designers are looking for new processes to enhance the spatial and experiential quality of interior spaces. The relationship between color and interior typologies is a relatively new paradigm. This paper discusses the role of colors in interior spaces from various perspectives, exploring their impact on the formation of interior typologies and the use of colors in space design. The paper analyzes interior typologies worldwide, from residential to commercial interior spaces, where color semantics plays a prominent role in the design. The paper also emphasizes the design process and the creation of design language, unveiling the possibilities of applying colors in interior spaces that can be in harmony with the building context, space functionality, or in opposition to the existing building envelope or environment. The paper aims to contribute to the field of interior design education and practices. By using experimental and various research methodologies for investigation, it aims to fill the gap in the literature regarding color semantics and the relationship between interior typologies.

Keywords: color psychology, color semantics, interior environments, interior typologies

Procedia PDF Downloads 72
41890 Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan

Authors: Latif Karimi, Yasuhide Mochida

Abstract:

The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners.

Keywords: modern methods of construction (MMC), prefabrication, prefab houses, sustainable construction, modern houses

Procedia PDF Downloads 230
41889 Engineering Analysis for Fire Safety Using Computational Fluid Dynamic (CFD)

Authors: Munirajulu M, Srikanth Modem

Abstract:

A large cricket stadium with the capacity to accommodate several thousands of spectators has the seating arena consisting of a two-tier arrangement with an upper and a lower bowl and an intermediate concourse podium level for pedestrian movement to access the bowls. The uniqueness of the stadium is that spectators can have an unobstructed view from all around the podium towards the field of play. Upper and lower bowls are connected by stairs. The stairs landing is a precast slab supported by cantilevered steel beams. These steel beams are fixed to precast columns supporting the stadium structure. The stair slabs are precast concrete supported on a landing slab and cantilevered steel beams. During an event of a fire at podium level between two staircases, fire resistance of steel beams is very critical to life safety. If the steel beam loses its strength due to lack of fire resistance, it will be weak in supporting stair slabs and may lead to a hazard in evacuating occupants from the upper bowl to the lower bowl. In this study, to ascertain fire rating and life safety, a performance-based design using CFD analysis is used to evaluate the steel beams' fire resistance. A fire size of 3.5 MW (convective heat output of fire) with a wind speed of 2.57 m/s is considered for fire and smoke simulation. CFD results show that the smoke temperature near the staircase/ around the staircase does not exceed 1500 C for the fire duration considered. The surface temperature of cantilevered steel beams is found to be less than or equal to 1500 C. Since this temperature is much less than the critical failure temperature of steel (5200 C), it is concluded that the design of structural steel supports on the staircase is adequate and does not need additional fire protection such as fire-resistant coating. CFD analysis provided an engineering basis for the performance-based design of steel structural elements and an opportunity to optimize fire protection requirements. Thus, performance-based design using CFD modeling and simulation of fire and smoke is an innovative way to evaluate fire rating requirements, ascertain life safety and optimize the design with regard to fire protection on structural steel elements.

Keywords: fire resistance, life safety, performance-based design, CFD analysis

Procedia PDF Downloads 176
41888 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD

Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis

Abstract:

It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performance

Keywords: Axial fan design, CFD, Preliminary Design, Optimization

Procedia PDF Downloads 373
41887 Interpreting Form Based Code in Historic Residential Corridor

Authors: Diljan C. K.

Abstract:

Every location on the planet has a history and culture that give it its own identity and character, making it distinct from others. urbanised world, it is fashionable to remould its original character and impression in a contemporary style. The new character and impression of places show a complete detachment from their roots. The heritage and cultural values of the place are replaced by new impressions, and as a result, they eventually lose their identity and character and never have sustenance. In this situation, form-based coding acts as a tool in the urban design process, helping to come up with solutions that strongly bind individuals to their neighbourhood and are closely related to culture through the physical spaces they are associated with. Form-based code was made by pioneers of new urbanism in 1987 in the United States of America. Since then, it has been used in various projects inside and outside the USA with varied scales, from the design of a single building to the design of a whole community. This research makes an effort to interpret the form-based code in historic corridors to establish the association of physical form and space with the public realm to uphold the context and culture. Many of the historic corridors are undergoing a tremendous transformation in their physical form, avoiding their culture and context. This will lead to it losing its identity in form and function. If the case of Valiyashala in Trivandrum is taken as the case, which is transforming its form and will lead to the loss of its identity, the form-based code will be a suitable tool to strengthen its historical value. The study concludes by analysing the existing code (KMBR) of Valiyashala and form-based code to find the requirements in form-based code for Valiyashala.

Keywords: form based code, urban conservation, heritage, historic corridor

Procedia PDF Downloads 95
41886 Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface

Authors: Amira Bousselmi

Abstract:

This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion.

Keywords: antenna multiband, global navigation system, AMC, Galeleo

Procedia PDF Downloads 58
41885 Comparing Occupants’ Satisfaction in LEED Certified Office Buildings and Non-LEED Certified Office Buildings: A Case Study of Office Buildings in Egypt and Turkey

Authors: Amgad A. Farghal, Dina I. El Desouki

Abstract:

Energy consumption and users’ satisfaction were compared in three LEED certified office buildings in turkey and an office building in Egypt. The field studies were conducted in summer 2012. The measured environmental parameters in the four buildings were indoor air temperature, relative humidity, CO2 percentage and light intensity. The traditional building is located in Smart Village in Abu Rawash, Cairo, Egypt. The building was studied for 7 days resulting in 84 responds. The three rated buildings are in Istanbul; Turkey. A Platinum LEED certified office building is owned by BASF and gained a platinum certificate for new construction and major renovation. The building was studied for 3 days resulting in 13 responds. A Gold LEED certified office building is owned by BASF and gained a gold certificate for new construction and major renovation. The building was studied for 2 days resulting in 10 responds. A silver LEED certified office building is owned by Unilever and gained a silver certificate for commercial interiors. The building was studied for 7 days resulting in 84 responds. The results showed that all buildings had no significant difference regarding occupants’ satisfaction with the amount of lighting, noise level, odor and access to the outdoor view. There was significant difference between occupants’ satisfaction in LEED certified buildings and the traditional building regarding the thermal environment and the perception of the general environment (colors, carpet and decoration. The findings suggest that careful design could lead to a certified building that enhances the thermal environment and the perception of the indoor environment leading to energy consumption without scarifying occupants’ satisfaction.

Keywords: energy consumption, occupants’ satisfaction, rating systems, office buildings

Procedia PDF Downloads 404
41884 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 322
41883 Building Information Modeling and Its Application in the State of Kuwait

Authors: Michael Gerges, Ograbe Ahiakwo, Martin Jaeger, Ahmad Asaad

Abstract:

Recent advances of Building Information Modeling (BIM) especially in the Middle East have increased remarkably. Dubai has been taking a lead on this by making it mandatory for BIM to be adopted for all projects that involve complex architecture designs. This is because BIM is a dynamic process that assists all stakeholders in monitoring the project status throughout different project phases with great transparency. It focuses on utilizing information technology to improve collaboration among project participants during the entire life cycle of the project from the initial design, to the supply chain, resource allocation, construction and all productivity requirements. In view of this trend, the paper examines the extent of applying BIM in the State of Kuwait, by exploring practitioners’ perspectives on BIM, especially their perspectives on main barriers and main advantages. To this end structured interviews were carried out based on questionnaires and with a range of different construction professionals. The results revealed that practitioners perceive improved communication and mitigated project risks by encouraged collaboration between project participants. However, it was also observed that the full implementation of BIM in the State of Kuwait requires concerted efforts to make clients demanding BIM, counteract resistance to change among construction professionals and offer more training for design team members. This paper forms part of an on-going research effort on BIM and its application in the State of Kuwait and it is on this basis that further research on the topic is proposed.

Keywords: building information modeling, BIM, construction industry, Kuwait

Procedia PDF Downloads 361
41882 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 439
41881 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 43
41880 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 68