Search results for: partial tuning sub-process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1599

Search results for: partial tuning sub-process

1089 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE

Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir

Abstract:

The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.

Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment

Procedia PDF Downloads 460
1088 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 134
1087 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow

Authors: Altoumi Alndalusi

Abstract:

High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.

Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form

Procedia PDF Downloads 158
1086 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 615
1085 Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting

Authors: Yoshie Asahara, Hidekuni Takao

Abstract:

Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face.

Keywords: balance of the mask strap, fine adjustment, film sensor, mask fitting technique, mask strap tension

Procedia PDF Downloads 240
1084 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 348
1083 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 212
1082 Design and Implementation of LabVIEW Based Relay Autotuning Controller for Level Setup

Authors: Manoj M. Sarode, Sharad P. Jadhav, Mukesh D. Patil, Pushparaj S. Suryawanshi

Abstract:

Even though the PID controller is widely used in industrial process, tuning of PID parameters are not easy. It is a time consuming and requires expert people. Another drawback of PID controller is that process dynamics might change over time. This can happen due to variation of the process load, normal wear and tear etc. To compensate for process behavior change over time, expert users are required to recalibrate the PID gains. Implementation of model based controllers usually needs a process model. Identification of process model is time consuming job and no guaranty of model accuracy. If the identified model is not accurate, performance of the controller may degrade. Model based controllers are quite expensive and the whole procedure for the implementation is sometimes tedious. To eliminate such issues Autotuning PID controller becomes vital element. Software based Relay Feedback Autotuning Controller proves to be efficient, upgradable and maintenance free controller. In Relay Feedback Autotune controller PID parameters can be achieved with a very short span of time. This paper presents the real time implementation of LabVIEW based Relay Feedback Autotuning PID controller. It is successfully developed and implemented to control level of a laboratory setup. Its performance is analyzed for different setpoints and found satisfactorily.

Keywords: autotuning, PID, liquid level control, recalibrate, labview, controller

Procedia PDF Downloads 394
1081 A Study of the Relationship between Time Management Behaviour and Job Satisfaction of Higher Education Institutes in India

Authors: Sania K. Rao, Feza T. Azmi

Abstract:

The purpose of the present study is to explore the relationship between time management behaviour and job satisfaction of academicians of higher education institutes in India. The analyses of this study were carried out with AMOS (version 20.0); and Confirmatory Factor Analysis (CFA) and Structural Equation Modelling (SEM) were conducted. The factor analysis and findings show that perceived control of time serves as the partial mediating factor to have a significant and positive influence on job satisfaction. Further, at the end, a number of suggestions to improve one’s time management behaviour were provided.

Keywords: time management behaviour, job satisfaction, higher education, India, mediation analysis

Procedia PDF Downloads 391
1080 Age Determination from Epiphyseal Union of Bones at Shoulder Joint in Girls of Central India

Authors: B. Tirpude, V. Surwade, P. Murkey, P. Wankhade, S. Meena

Abstract:

There is no statistical data to establish variation in epiphyseal fusion in girls in central India population. This significant oversight can lead to exclusion of persons of interest in a forensic investigation. Epiphyseal fusion of proximal end of humerus in eighty females were analyzed on radiological basis to assess the range of variation of epiphyseal fusion at each age. In the study, the X ray films of the subjects were divided into three groups on the basis of degree of fusion. Firstly, those which were showing No Epiphyseal Fusion (N), secondly those showing Partial Union (PC), and thirdly those showing Complete Fusion (C). Observations made were compared with the previous studies.

Keywords: epiphyseal union, shoulder joint, proximal end of humerus

Procedia PDF Downloads 498
1079 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate

Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo

Abstract:

A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.

Keywords: chemical reaction, MHD, double-diffusive, stretching plate

Procedia PDF Downloads 410
1078 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 445
1077 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 211
1076 High Pressure Multiphase Flow Experiments: The Impact of Pressure on Flow Patterns Using an X-Ray Tomography Visualisation System

Authors: Sandy Black, Calum McLaughlin, Alessandro Pranzitelli, Marc Laing

Abstract:

Multiphase flow structures of two-phase multicomponent fluids were experimentally investigated in a large diameter high-pressure pipeline up to 130 bar at TÜV SÜD’s National Engineering Laboratory Advanced Multiphase Facility. One of the main objectives of the experimental test campaign was to evaluate the impact of pressure on multiphase flow patterns as much of the existing information is based on low-pressure measurements. The experiments were performed in a horizontal and vertical orientation in both 4-inch and 6-inch pipework using nitrogen, ExxsolTM D140 oil, and a 6% aqueous solution of NaCl at incremental pressures from 10 bar to 130 bar. To visualise the detailed structure of the flow of the entire cross-section of the pipe, a fast response X-ray tomography system was used. A wide range of superficial velocities from 0.6 m/s to 24.0 m/s for gas and 0.04 m/s and 6.48 m/s for liquid was examined to evaluate different flow regimes. The results illustrated the suppression of instabilities between the gas and the liquid at the measurement location and that intermittent or slug flow was observed less frequently as the pressure was increased. CFD modellings of low and high-pressure simulations were able to successfully predict the likelihood of intermittent flow; however, further tuning is necessary to predict the slugging frequency. The dataset generated is unique as limited datasets exist above 100 bar and is of considerable value to multiphase flow specialists and numerical modellers.

Keywords: computational fluid dynamics, high pressure, multiphase, X-ray tomography

Procedia PDF Downloads 145
1075 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications

Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki

Abstract:

Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.

Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring

Procedia PDF Downloads 148
1074 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 287
1073 Numerical Simulation of Truck Collision with Road Blocker

Authors: Engin Metin Kaplan, Kemal Yaman

Abstract:

In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations.

Keywords: vehicle barrier, truck collision, road blocker, crash analysis

Procedia PDF Downloads 476
1072 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System

Authors: Ayda Nikkar, Roghayye Ahmadiasl

Abstract:

In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.

Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave

Procedia PDF Downloads 311
1071 Novel Scratch Resistant Self-Healing Automotive Clearcoats Using Hyperbranched Polymers and POSS Nanostructures

Authors: H.Yari, M. Mohseni, Z. Ranjbar

Abstract:

In this work a typical automotive clearcoat is modified with a combination of hyperbranched polymer (HBP) and polyhedral oligomeric silsesquioxane (POSS) nanostructures to simultaneously enhance the scratch resistance and healing ability of the resulting films. Micro-scratch and healing data revealed that these goals were achieved at high loadings of modifiers. Enhanced scratch resistance was attributed to the improved elastic recovery of the clearcoats in presence of modifiers. In addition, improved healing performance due to the partial replacement of covalent cross-links with physical ones resulted from the unique globular highly branched structure of HBP and POSS macromolecules.

Keywords: automotive clearcoat, POSS building blocks scratch resistance, self-healing

Procedia PDF Downloads 393
1070 Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column

Authors: Vinayambika S. Bhat, S. Shanmuga Priya, I. Thirunavukkarasu, Shreeranga Bhat

Abstract:

An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory.

Keywords: distillation, energy, MIMO process, time delay, robust stability

Procedia PDF Downloads 415
1069 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 110
1068 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

Authors: Amir T. Payandeh Najafabadi

Abstract:

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.

Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions

Procedia PDF Downloads 341
1067 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 341
1066 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 177
1065 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. Murray Schafer, the author who originally developed this concept, highlights the need for a greater recognition of sound reality, through the selection and differentiation of sounds, contributing to a tuning of the world and to the balance and well-being of humanity. According to some authors sound environment, produced and created in various ways, provides various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference.

Keywords: sound instance, soundscape, sound art, perception, composition

Procedia PDF Downloads 148
1064 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 249
1063 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 122
1062 Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films

Authors: Abdelaziz Rabhi, Mohamed Amrani, Abderrazek Ziane, Nabil Belkadi, Abdelraouf Hocini

Abstract:

In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction.

Keywords: breakdown, polycrystalline silicon, PIN, grain, impact ionization

Procedia PDF Downloads 382
1061 Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation

Authors: Karla Lienau, Rafael Müller, René Moré, Debora Ressnig, Dan Cook, Richard Walton, Greta R. Patzke

Abstract:

The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques.

Keywords: carbodiimide, photocatalysis, spinels, water oxidation

Procedia PDF Downloads 290
1060 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 372