Search results for: panel data method
38036 The Nexus between Country Risk and Exchange Rate Regimes: A Global Investigation
Authors: Jie Liu, Wei Wei, Chun-Ping Chang
Abstract:
Using a sample of 110 countries over the period 1984-2013, this paper examines the impacts of country risks on choosing a specific exchange rate regime (first by utilizing the Levy-Yeyati and Sturzenegger de facto classification and then robusting it by the IMF de jure measurement) relative to other regimes via the panel multinomial logit approach. Empirical findings are as follows. First, in the full samples case we provide evidence that government is more likely to implement a flexible regime, but less likely to adopt a fixed regime, under a low level of composite and financial risk. Second, we find that Eurozone countries are more likely to choose a fixed exchange rate regime with a decrease in the level of country risk and favor a flexible regime in response to a shock from an increase of risk, which is opposite to non-Eurozone countries. Third, we note that high-risk countries are more likely to choose a fixed regime with a low level of composite and political risk in the government, but do not adjust the exchange rate regime as a shock absorber when facing economic and financial risks. It is interesting to see that those countries with relatively low risk display almost opposite results versus high-risk economies. Overall, we believe that it is critically important to account for political economy variables in a government’s exchange rate policy decisions, especially for country risks. All results are robust to the panel ordered probit model.Keywords: country risk, political economy, exchange rate regimes, shock absorber
Procedia PDF Downloads 30238035 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 30838034 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk
Authors: Heba Abdelmotaal, Magdy Abdel-Kader
Abstract:
Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management
Procedia PDF Downloads 43838033 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 15138032 Semi-Automatic Method to Assist Expert for Association Rules Validation
Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen
Abstract:
In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.Keywords: association rules, rule-based classification, classification quality, validation
Procedia PDF Downloads 43938031 A Method for Reduction of Association Rules in Data Mining
Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa
Abstract:
The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.Keywords: data mining, association rules, rules reduction, artificial intelligence
Procedia PDF Downloads 16038030 Determinants of Financial Performance of South African Businesses in Africa: Evidence from JSE Listed Telecommunications Companies
Authors: Nomakhosi Tshuma, Carley Chetty
Abstract:
This study employed panel regression analysis to investigate the financial performance determinants of MTN and Vodacom’s rest of Africa businesses between 2012 to 2020. It used net profit margin, return on assets (ROA), and return on equity (ROE) as financial performance proxies. Financial performance determinants investigated were asset size, debt ratio, liquidity, number of subscribers, and exchange rate. Data relating to exchange rates were obtained from the World Bank website, while financial data and subscriber information were obtained from the companies’ audited financial statements. The study found statistically significant negative relationships between debt and both ROA and net profit, exchange rate and both ROA and net profit, and subscribers and ROE. It also found significant positive relationships between ROE and both asset size and exchange rate. The study recommends strategic options that optimise on the above findings, and these include infrastructure sharing to reduce infrastructure costs and the minimisation of foreign-denominated debt.Keywords: financial performance, determinants of financial performance, business in Africa, telecommunications industry
Procedia PDF Downloads 9938029 Challenges & Barriers for Neuro Rehabilitation in Developing Countries
Authors: Muhammad Naveed Babur, Maria Liaqat
Abstract:
Background & Objective: People with disabilities especially neurological disabilities have many unmet health and rehabilitation needs, face barriers in accessing mainstream health-care services, and consequently have poor health. There are not sufficient epidemiological studies from Pakistan which assess barriers to neurorehabilitation and ways to counter it. Objectives: The objective of the study was to determine the challenges and to evaluate the barriers for neuro-rehabilitation services in developing countries. Methods: This is Exploratory sequential qualitative study based on the Panel discussion forum in International rehabilitation sciences congress and national rehabilitation conference 2017. Panel group discussion has been conducted in February 2017 with a sample size of eight professionals including Rehabilitation medicine Physician, Physical Therapist, Speech Language therapist, Occupational Therapist, Clinical Psychologist and rehabilitation nurse working in multidisciplinary/Interdisciplinary team. A comprehensive audio-videography have been developed, recorded, transcripted and documented. Data was transcribed and thematic analysis along with characteristics was drawn manually. Data verification was done with the help of two separate coders. Results: After extraction of two separate coders following results are emerged. General category themes are disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. Barriers identified at the level are high cost, stigma, lengthy course of recovery. Hospital related barriers are lack of social support and individually tailored goal setting processes. Organizational barriers identified are lack of basic diagnostic facilities, lack of funding and human resources. Recommendations given by panelists were investment in education, capacity building, infrastructure, governance support, strategies to promote communication and realistic goals. Conclusion: It is concluded that neurorehabilitation in developing countries need attention in following categories i.e. disease profile, demographic profile, training and education, research, barriers, governance, global funding, informal care, resources and cultural beliefs and public awareness. This study also revealed barriers at the level of patient, hospital, organization. Recommendations were also given by panelists.Keywords: disability, neurorehabilitation, telerehabilitation, disability
Procedia PDF Downloads 19138028 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow
Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya
Abstract:
Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control
Procedia PDF Downloads 10838027 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling
Authors: Syed Masood Hussain
Abstract:
An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter
Procedia PDF Downloads 54338026 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 64038025 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field
Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi
Abstract:
Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing
Procedia PDF Downloads 19638024 Cross Cultural Adaptation and Content Validation of the Assessment Instrument Preschooler Awareness of Stuttering Survey
Authors: Catarina Belchior, Catarina Martins, Sara Mendes, Ana Rita S. Valente, Elsa Marta Soares
Abstract:
Introduction: The negative feelings and attitudes that a person who stutters can develop are extremely relevant when considering assessment and intervention in Speech and Language Therapy. This relates to the fact that the person who stutters can experience feelings such as shame, fear and negative beliefs when communicating. Considering the complexity and importance of integrating diverse aspects in stuttering intervention, it is central to identify those emotions as early as possible. Therefore, this research aimed to achieve the translation, adaptation to European Portuguese and to analyze the content validation of the Preschooler Awareness Stuttering Survey (Abbiati, Guitar & Hutchins, 2015), an instrument that allows the assessment of the impact of stuttering on preschool children who stutter considering feelings and attitudes. Methodology: Cross-sectional descriptive qualitative research. The following methodological procedures were followed: translation, back-translation, panel of experts and pilot study. This abstract describes the results of the first three phases of this process. The translation was accomplished by two Speech Language Therapists (SLT). Both professionals have more than five years of experience and are users of English language. One of them has a broad experience in the field of stuttering. Back-translation was conducted by two bilingual individuals without experience in health or any knowledge about the instrument. The panel of experts was composed by 3 different SLT, experts in the field of stuttering. Results and Discussion: In the translation and back-translation process it was possible to verify differences in semantic and idiomatic equivalences of several concepts and expressions, as well as the need to include new information to enhance the understanding of the application of the instrument. The meeting between the two translators and the researchers allowed the achievement of a consensus version that was used in back-translation. Considering adaptation and content validation, the main change made by the experts was the conceptual equivalence of the questions and answers of the instrument's sheets. Considering that in the translated consensus version the questions began with various nouns such as 'is' or 'the cow' and that the answers did not contain the adverb 'much' as in the original instrument, the panel agreed that it would be more appropriate if the questions all started with 'how' and that all the answers should present the adverb 'much'. This decision was made to ensure that the translate instrument would be similar to the original and so that the results obtained could be comparable between the original and the translated instrument. There was also elaborated one semantic equivalence between concepts. The panel of experts found that all other items and specificities of the instrument were adequate, concluding the adequacy of the instrument considering its objectives and its intended target population. Conclusion: This research aspires to diversify the existing validated resources in this scope, adding a new instrument that allows the assessment of preschool children who stutter. Consequently, it is hoped that this instrument will provide a real and reliable assessment that can lead to an appropriate therapeutic intervention according to the characteristics and needs of each child.Keywords: stuttering, assessment, feelings and attitudes, speech language therapy
Procedia PDF Downloads 14938023 Problems of Boolean Reasoning Based Biclustering Parallelization
Authors: Marcin Michalak
Abstract:
Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.Keywords: Boolean reasoning, biclustering, parallelization, prime implicant
Procedia PDF Downloads 12538022 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6638021 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 19838020 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.Keywords: tomato yield prediction, naive Bayes, redundancy, WSG
Procedia PDF Downloads 23338019 Local Buckling of Web-Core and Foam-Core Sandwich Panels
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made. Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non-metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics. For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs. In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries. The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.Keywords: local buckling, finite strip, sandwich panels, web and foam core
Procedia PDF Downloads 35138018 Comparative Study of Expository and Simulation Method of Teaching Woodwork at Federal University of Technology, Minna, Nigeria
Authors: Robert Ogbanje Okwori
Abstract:
The research studied expository and simulation method of teaching woodwork at Federal University of Technology, Minna, Niger State, Nigeria. The purpose of the study was to compare expository and simulation method of teaching woodwork and determine the method that is more effective in improving performance of students in woodwork. Two research questions and two hypotheses were formulated to guide the study. Fifteen objective questions and two theory questions were used for data collection. The questions set were on structure of timber. The study used the quasi experimental design. The population of the study consisted of 25 woodwork students of Federal University of Technology, Minna, Niger State, Nigeria and three hundred (300) level students were used for the study. The lesson plans for expository method and questions were validated by three lecturers in the Department of Industrial and Technology Education, Federal University of Technology, Minna, Nigeria. The validators checked the appropriates of test items and all the corrections and inputs were effected before administration of the instrument. Data obtained were analyzed using mean, standard deviation and t-test statistical tool. The null hypotheses were formulated and tested using t-test statistics at 0.05 level of significance. The findings of the study showed that simulation method of teaching has improved students’ performance in woodwork and the performance of the students was not influenced by gender. Based on the findings of the study, it was concluded that there was a significant difference in the mean achievement scores of students taught woodwork using simulation method. This implies that simulation method is more effective than expository method of teaching woodwork. Therefore, woodwork teachers should adopt simulation method of teaching woodwork towards better performance. It was recommended that simulation method should be used by woodwork lecturers to teach woodwork since students perform better using the method and also the teachers needs to be trained and re-trained in using simulation method for teaching woodwork. Teachers should be encouraged to use simulation method for their instructional delivery because it will allow them to identify their areas of strength and weakness when imparting knowledge to woodwork students. Government and different agencies should assist in procuring materials and equipment for wood workshops to enable students effectively practice what they have been taught using simulation method.Keywords: comparative, expository, simulation, woodwork
Procedia PDF Downloads 42538017 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data
Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry
Procedia PDF Downloads 21938016 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.Keywords: microchannel, boiling, Cahn-Hilliard method, simulation
Procedia PDF Downloads 42338015 Impact of Financial Factors on Total Factor Productivity: Evidence from Indian Manufacturing Sector
Authors: Lopamudra D. Satpathy, Bani Chatterjee, Jitendra Mahakud
Abstract:
The rapid economic growth in terms of output and investment necessitates a substantial growth of Total Factor Productivity (TFP) of firms which is an indicator of an economy’s technological change. The strong empirical relationship between financial sector development and economic growth clearly indicates that firms financing decisions do affect their levels of output via their investment decisions. Hence it establishes a linkage between the financial factors and productivity growth of the firms. To achieve the smooth and continuous economic growth over time, it is imperative to understand the financial channel that serves as one of the vital channels. The theoretical or logical argument behind this linkage is that when the internal financial capital is not sufficient enough for the investment, the firms always rely upon the external sources of finance. But due to the frictions and existence of information asymmetric behavior, it is always costlier for the firms to raise the external capital from the market, which in turn affect their investment sentiment and productivity. This kind of financial position of the firms puts heavy pressure on their productive activities. Keeping in view this theoretical background, the present study has tried to analyze the role of both external and internal financial factors (leverage, cash flow and liquidity) on the determination of total factor productivity of the firms of manufacturing industry and its sub-industries, maintaining a set of firm specific variables as control variables (size, age and disembodied technological intensity). An estimate of total factor productivity of the Indian manufacturing industry and sub-industries is computed using a semi-parametric approach, i.e., Levinsohn- Petrin method. It establishes the relationship between financial factors and productivity growth of 652 firms using a dynamic panel GMM method covering the time period between 1997-98 and 2012-13. From the econometric analyses, it has been found that the internal cash flow has a positive and significant impact on the productivity of overall manufacturing sector. The other financial factors like leverage and liquidity also play the significant role in the determination of total factor productivity of the Indian manufacturing sector. The significant role of internal cash flow on determination of firm-level productivity suggests that access to external finance is not available to Indian companies easily. Further, the negative impact of leverage on productivity could be due to the less developed bond market in India. These findings have certain implications for the policy makers to take various policy reforms to develop the external bond market and easily workout through which the financially constrained companies will be able to raise the financial capital in a cost-effective manner and would be able to influence their investments in the highly productive activities, which would help for the acceleration of economic growth.Keywords: dynamic panel, financial factors, manufacturing sector, total factor productivity
Procedia PDF Downloads 33238014 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT
Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki
Abstract:
A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT
Procedia PDF Downloads 29538013 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time
Procedia PDF Downloads 36438012 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 29938011 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 22838010 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine
Authors: Chen Wang, Chun Liang
Abstract:
Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine
Procedia PDF Downloads 17338009 Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents
Authors: Gabriel Wosiak, Dyovani Coelho, Evaldo B. Carneiro-Neto, Ernesto C. Pereira, Mauro C. Lopes
Abstract:
In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate.Keywords: capacitive current, fast-scan cyclic voltammetry, finite-element method, electroanalysis
Procedia PDF Downloads 7538008 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition
Authors: D. Kaczorek
Abstract:
Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.Keywords: concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues
Procedia PDF Downloads 16538007 Appropriation of Cryptocurrencies as a Payment Method by South African Retailers
Authors: Neliswa Dyosi
Abstract:
Purpose - Using an integrated Technology-Organization-Environment (TOE) framework and the model of technology appropriation (MTA) as a theoretical lens, this interpretive qualitative study seeks to understand and explain the factors that influence the appropriation, non-appropriation, and disappropriation of bitcoin as a payment method by South African retailers. Design/methodology/approach –The study adopts the interpretivist philosophical paradigm. Multiple case studies will be adopted as a research strategy. For data collection, the study follows a qualitative approach. Qualitative data will be collected from the six retailers in various industries. Semi-structured interviews and documents will be used as the data collection techniques. Purposive and snowballing sampling techniques will be used to identify participants within the organizations. Data will be analyzed using thematic analysis. Originality/value - Using the deduction approach, the study seeks to provide a descriptive and explanatory contribution to theory. The study contributes to theory development by integrating the MTA and TOE frameworks as a means to understand technology adoption behaviors of organizations, in this case, retailers. This is also the first study that looks at an integrated approach of the Technology-Organization-Environment (TOE) framework and the MTA framework to understand the adoption and use of a payment method. South Africa is ranked amongst the top ten countries in the world on cryptocurrency adoption. There is, however, still a dearth of literature on the current state of adoption and usage of bitcoin as a payment method in South Africa. The study will contribute to the existing literature as bitcoin cryptocurrency is gaining popularity as an alternative payment method across the globe.Keywords: cryptocurrency, bitcoin, payment methods, blockchain, appropriation, online retailers, TOE framework, disappropriation, non-appropriation
Procedia PDF Downloads 136