Search results for: measuring accuracy
4745 Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy
Authors: K. A. Mistry, I. B. Patel, A. H. Prajapati
Abstract:
In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported. In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.Keywords: EDAX, hardening coefficient, micro hardness, Bi-Pb alloy
Procedia PDF Downloads 3064744 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution
Authors: Niklas Bondesson
Abstract:
Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour
Procedia PDF Downloads 4144743 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1434742 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1044741 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach
Authors: Adeep Hande, Shubham Agarwal
Abstract:
This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.Keywords: large language models, semi-supervised learning, sexism detection, data sparsity
Procedia PDF Downloads 704740 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
Authors: Mahya Naghipoor
Abstract:
Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.Keywords: lung cancer, radiomics, computer tomography, mutation
Procedia PDF Downloads 1674739 Management of Acute Appendicitis with Preference on Delayed Primary Suturing of Surgical Incision
Authors: N. A. D. P. Niwunhella, W. G. R. C. K. Sirisena
Abstract:
Appendicitis is one of the most encountered abdominal emergencies worldwide. Proper clinical diagnosis and appendicectomy with minimal post operative complications are therefore priorities. Aim of this study was to ascertain the overall management of acute appendicitis in Sri Lanka in special preference to delayed primary suturing of the surgical site, comparing other local and international treatment outcomes. Data were collected prospectively from 155 patients who underwent appendicectomy following clinical and radiological diagnosis with ultrasonography. Histological assessment was done for all the specimens. All perforated appendices were managed with delayed primary closure. Patients were followed up for 28 days to assess complications. Mean age of patient presentation was 27 years; mean pre-operative waiting time following admission was 24 hours; average hospital stay was 72 hours; accuracy of clinical diagnosis of appendicitis as confirmed by histology was 87.1%; post operative wound infection rate was 8.3%, and among them 5% had perforated appendices; 4 patients had post operative complications managed without re-opening. There was no fistula formation or mortality reported. Current study was compared with previously published data: a comparison on management of acute appendicitis in Sri Lanka vs. United Kingdom (UK). The diagnosis of current study was equally accurate, but post operative complications were significantly reduced - (current study-9.6%, compared Sri Lankan study-16.4%; compared UK study-14.1%). During the recent years, there has been an exponential rise in the use of Computerised Tomography (CT) imaging in the assessment of patients with acute appendicitis. Even though, the diagnostic accuracy without using CT, and treatment outcome of acute appendicitis in this study match other local studies as well as with data compared to UK. Therefore CT usage has not increased the diagnostic accuracy of acute appendicitis significantly. Especially, delayed primary closure may have reduced post operative wound infection rate for ruptured appendices, therefore suggest this approach for further evaluation as a safer and an effective practice in other hospitals worldwide as well.Keywords: acute appendicitis, computerised tomography, diagnostic accuracy, delayed primary closure
Procedia PDF Downloads 1664738 An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity
Authors: Kushal Kumar Chode, Remus Miahi Cirstea
Abstract:
In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated.Keywords: chimera mesh, computational accuracy, overset mesh, platooning vehicles
Procedia PDF Downloads 3504737 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 2664736 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 4744735 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 864734 A Computer-Aided System for Detection and Classification of Liver Cirrhosis
Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy
Abstract:
This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy
Procedia PDF Downloads 4614733 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice
Authors: Chiling Chen, Chiaoying Chou, Siyang Wu
Abstract:
Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy
Procedia PDF Downloads 3004732 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1224731 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model
Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph
Procedia PDF Downloads 2804730 Identification of Indices to Quantify Gentrification
Authors: Sophy Ann Xavier, Lakshmi A
Abstract:
Gentrification is the process of altering a neighborhood's character through the influx of wealthier people and establishments. This idea has subsequently been expanded to encompass brand-new, high-status construction projects that involve regenerating brownfield sites or demolishing and rebuilding residential neighborhoods. Inequality is made worse by Gentrification in ways that go beyond socioeconomic position. The elderly, members of racial and ethnic minorities, individuals with disabilities, and mental health all suffer disproportionately when they are displaced. Cities must cultivate openness, diversity, and inclusion in their collaborations, as well as cooperation on objectives and results. The papers compiled in this issue concentrate on the new gentrification discussions, the rising residential allure of central cities, and the indices to measure this process according to its various varieties. The study makes an effort to fill the research gap in the area of gentrification studies, which is the absence of a set of indices for measuring Gentrification in a specific area. Studies on Gentrification that contain maps of historical change highlight trends that will aid in the production of displacement risk maps, which will guide future interventions by allowing residents and policymakers to extrapolate into the future. Additionally, these maps give locals a glimpse into the future of their communities and serve as a political call to action in areas where residents are expected to be displaced. This study intends to pinpoint metrics and approaches for measuring Gentrification that can then be applied to create a spatiotemporal map of a region and tactics for its inclusive planning. An understanding of various approaches will enable planners and policymakers to select the best approach and create the appropriate plans.Keywords: gentrification, indices, methods, quantification
Procedia PDF Downloads 764729 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 544728 Localization Mobile Beacon Using RSSI
Authors: Sallama Resen, Celal Öztürk
Abstract:
Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength
Procedia PDF Downloads 3464727 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 1004726 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers
Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin
Abstract:
Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.Keywords: anxiety, emotional valence, childhood, lexical access
Procedia PDF Downloads 2884725 Screening Tools and Its Accuracy for Common Soccer Injuries: A Systematic Review
Authors: R. Christopher, C. Brandt, N. Damons
Abstract:
Background: The sequence of prevention model states that by constant assessment of injury, injury mechanisms and risk factors are identified, highlighting that collecting and recording of data is a core approach for preventing injuries. Several screening tools are available for use in the clinical setting. These screening techniques only recently received research attention, hence there is a dearth of inconsistent and controversial data regarding their applicability, validity, and reliability. Several systematic reviews related to common soccer injuries have been conducted; however, none of them addressed the screening tools for common soccer injuries. Objectives: The purpose of this study was to conduct a review of screening tools and their accuracy for common injuries in soccer. Methods: A systematic scoping review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were used to access suitable studies. Some of the key search terms included: injury screening, screening, screening tool accuracy, injury prevalence, injury prediction, accuracy, validity, specificity, reliability, sensitivity. All types of English studies dating back to the year 2000 were included. Two blind independent reviewers selected and appraised articles on a 9-point scale for inclusion as well as for the risk of bias with the ACROBAT-NRSI tool. Data were extracted and summarized in tables. Plot data analysis was done, and sensitivity and specificity were analyzed with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The initial search yielded 95 studies, of which 21 were duplicates, and 54 excluded. A total of 10 observational studies were included for the analysis: 3 studies were analysed quantitatively while the remaining 7 were analysed qualitatively. Seven studies were graded low and three studies high risk of bias. Only high methodological studies (score > 9) were included for analysis. The pooled studies investigated tools such as the Functional Movement Screening (FMS™), the Landing Error Scoring System (LESS), the Tuck Jump Assessment, the Soccer Injury Movement Screening (SIMS), and the conventional hamstrings to quadriceps ratio. The accuracy of screening tools was of high reliability, sensitivity and specificity (calculated as ICC 0.68, 95% CI: 52-0.84; and 0.64, 95% CI: 0.61-0.66 respectively; I² = 13.2%, P=0.316). Conclusion: Based on the pooled results from the included studies, the FMS™ has a good inter-rater and intra-rater reliability. FMS™ is a screening tool capable of screening for common soccer injuries, and individual FMS™ scores are a better determinant of performance in comparison with the overall FMS™ score. Although meta-analysis could not be done for all the included screening tools, qualitative analysis also indicated good sensitivity and specificity of the individual tools. Higher levels of evidence are, however, needed for implication in evidence-based practice.Keywords: accuracy, screening tools, sensitivity, soccer injuries, specificity
Procedia PDF Downloads 1794724 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication
Authors: S. H. J. Liu
Abstract:
This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces
Procedia PDF Downloads 2454723 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population
Authors: Ye Xue, Zhenhua Deng
Abstract:
Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool
Procedia PDF Downloads 584722 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold
Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho
Abstract:
The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold
Procedia PDF Downloads 1434721 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program
Authors: Carla Van De Sande, Jana Vandenberg
Abstract:
Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice
Procedia PDF Downloads 2054720 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 1074719 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter
Authors: Nirmal Sugathan, Santosh Maruthy
Abstract:
Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words
Procedia PDF Downloads 2404718 Study and Evaluation of Occupational Health and Safety in Power Plant in Pakistan
Authors: Saira Iqbal
Abstract:
Occupational Health and Safety issues nowadays have become an important esteem in the context of Industrial Production. This study is designed to measure the workplace hazards at Kohinoor Energy Limited. Mainly focused hazards were Heat Stress, Noise Level, Light Level and Ergonomics. Measurements for parameters like Wet, Dry, Globe, WBGTi and RH% were taken directly by visiting the Study Area. The temperature in Degrees was recoded at Control Room and Engine Hall. Highest Temperature was recoded in Engine Hall which was about 380C. Efforts were made to record emissions of Noise Levels from the main area of concern like Engines in Engine hall, parking area, and mechanical workshop. Permissible level for measuring Noise is 85 and its Unit of Measurement is dB (A). In Engine Hall Noise was very high which was about 109.6 dB (A) and that level was exceeding the limits. Illumination Level was also recorded at different areas of Power Plant. The light level was though under permissible limits but in some areas like Engine Hall and Boiler Room, level of light was very low especially in Engine Hall where the level was 29 lx. Practices were performed for measuring hazards in context of ergonomics like extended reaching, deviated body postures, mechanical stress, and vibration exposures of the worker at different units of plants by just observing workers during working hours. Since KEL is ISO 8000 and 14000 certified, the researcher found no serious problems in the parameter Ergonomics however it was a common scenario that workers were reluctant to apply PPEs.Keywords: workplace hazards, heat hazard, noise hazard, illumination, ergonomics
Procedia PDF Downloads 3214717 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method
Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa
Abstract:
PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers
Procedia PDF Downloads 4834716 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load
Authors: Sanjin Kršćanski, Josip Brnić
Abstract:
Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending
Procedia PDF Downloads 305