Search results for: logistic regression with random effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15112

Search results for: logistic regression with random effects

14602 Factors Associated with Condom Breakage among Female Sex Workers: Evidence from Behavioral Tracking Survey in Thane District of Maharashtra, India

Authors: Sukhvinder Kaur, Jayanta Bora, Ashok Agarwal, Sangeeta Kaul

Abstract:

Background: HIV and STI transmission can be prevented if condoms are used properly, but condom tear may lead to infections even if are used consistently. Studies reveal high rates of condom breakage among Female Sex Workers (FSWs). USAID PHFI-PIPPSE is piloting a prevention model among high risk groups at Thane district of Maharashtra, India by implementing prevention and advocacy efforts for such risk behaviors. The current analysis highlights the correlates of condom breakage among FSWs from Thane. Method: A Behavioral Tracking Survey was conducted in 2014-15 among 503 FSWs through probability-based two stage random sampling from 3,660 FSWs at 100 hotspots, to understand levels of high risk behaviors, awareness and exposure to prevention programs. Bi-variate and multivariate-logistic regression methods used to assess the association of condom breakage while having sex with age, STI occurrence, anal sex with clients and alcohol consumption. Only self-reported STIs (Genital sore/ulcer, yellowish/ greenish discharge from vagina with/without foul smell, lower abdominal pain without diarrhea/dysentery or menses) were considered. Major Findings: Results depicted FSWs who reported condom breakage while having sex with any type of partner (paying clients, non-paying partners and other than main partner husband/boyfriend) had significantly high number of STIs (42.3% vs 16.9 %, P, 0.000) and had started sexual relationship in <16 years of age (31.0% vs 16.4 %, P, 0.000). Multivariate analysis after controlling the age at sex, knowledge about HIV and literacy, highlighted significantly higher odds of condom breakage among FSWs who have reported currently suffering with STI [AOR 2.91, 95% CI 1.75 - 4.83; P, 0.000]; who had anal sex with their paying client [AOR 2.59, 95% CI 1.59 - 4.19; P, 0.000]; and who consumed alcohol in the last 12 months [AOR 1.89, 95% CI 1.01 - 3.53; P, 0.047]. Conclusion: Risky behavior like anal sex with paying clients and impact of alcohol while having sex are main factors for condom breakage among young sex workers; and condom breakage leads to STIs. Hence, program interventions should address measures for prevention of condom breakage for HIV/STI prevention.

Keywords: female sex workers, condom breakage, anal sex, young sex workers

Procedia PDF Downloads 261
14601 Bullying Rates Among Students with Special Needs in the United States

Authors: Kaycee Bills

Abstract:

Past studies have indicated students who have disabilities are at a higher risk of experiencing bullying victimization in comparison to other student groups. Extracurricular activity participation has been shown to establish better social outcomes for students. These positive social outcomes indirectly decrease the number of times a student is bullied. The following study uses the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) to analyze the bullying concurrences experienced among students, with disabilities being a focal variable. To explore the relationship between extracurricular involvement and bullying occurrence rates, this study employs a binary logistic regression to determine if athletic and non-athletic extracurricular activities have an impact on the number of times a student with disabilities experiences bullying. Implications for future social welfare practice and research are discussed.

Keywords: disability, bullying, extracurricular activities, athletics

Procedia PDF Downloads 161
14600 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
14599 Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP

Procedia PDF Downloads 394
14598 The Relationship between the Use of Social Networks with Executive Functions and Academic Performance in High School Students in Tehran

Authors: Esmail Sadipour

Abstract:

The use of social networks is increasing day by day in all societies. The purpose of this research was to know the relationship between the use of social networks (Instagram, WhatsApp, and Telegram) with executive functions and academic performance in first-year female high school students. This research was applied in terms of purpose, quantitative in terms of data type, and correlational in terms of technique. The population of this research consisted of all female high school students in the first year of district 2 of Tehran. Using Green's formula, the sample size of 150 people was determined and selected by cluster random method. In this way, from all 17 high schools in district 2 of Tehran, 5 high schools were selected by a simple random method and then one class was selected from each high school, and a total of 155 students were selected. To measure the use of social networks, a researcher-made questionnaire was used, the Barclay test (2012) was used for executive functions, and last semester's GPA was used for academic performance. Pearson's correlation coefficient and multivariate regression were used to analyze the data. The results showed that there is a negative relationship between the amount of use of social networks and self-control, self-motivation and time self-management. In other words, the more the use of social networks, the fewer executive functions of students, self-control, self-motivation, and self-management of their time. Also, with the increase in the use of social networks, the academic performance of students has decreased.

Keywords: social networks, executive function, academic performance, working memory

Procedia PDF Downloads 96
14597 Investigating Income Diversification Strategies into Off-Farm Activities Among Rural Households in Ethiopia

Authors: Kibret Berhanu Getinet

Abstract:

Off-farm income diversification by farm rural households has gained the attention of researchers and policymakers due to the fact that agriculture failed to meet the needs of people in developing countries like Ethiopia. The objective of this study was to investigate income diversification strategies into off-farm activities among rural households in Hawassa Zuria Woreda, Sidama National Regional State, Ethiopia. The study used primary and secondary data sources for the primary data collection questionnaire employed as a data collection instrument. A multistage sampling technique was used to collect data from a total of 197 sample households from four kebeles of the study area. Descriptive statistics, as well as econometrics methods of data analysis, were employed. The descriptive statistics result indicates that the majority of sample rural households (68.53 %) have engaged in off-farm income diversification activities while the remaining 31.47% of households did not participate in the diversification in the study area. The choice of participants among the strategies indicates that 6.60% of respondents participated in off-farm wage employment, 30.46% participated in off-farm self-employment, and about 31.47% of them participated in both off-farm wage employment. The study revealed that the share of off-farm income in total annual earnings of households was about 48.457%, and thus, the off-farm diversification significantly contributes to the rural household income. Moreover, binary and multinomial logistic regression models were employed to identify factors that affect the participation and the choices of the off-farm income diversification strategies, respectively. The binary logit model result indicated that agro-ecological zone, education status of the households, available technical skills of the household, household saving, total livestock owned by the households, access to electricity, road access and being married of household head were significant and positively affected the chance of diversification in off-farm activities while the on-farm income of households is negatively affected the chance of diversification. Similarly, the multinomial logistic regression model estimate revealed that agroecological zone, on-farm income, available technical skills, household savings, and access to electricity are positively related and significantly influenced the household’s choice of employment into off-farm wage employment. The off-farm self-employment diversification choice is significantly influenced by on-farm income, available technical skills, household savings, total livestock owned, and access to electricity. Moreover, the result showed that the factors that affect the choice of farm households to engage in both off-farm wage and self-employment are ecological zone, education status, on-farm income, available technical skills, household own saving, market access, total livestock owned, access to electricity and road access. Thus, due attention should be given to addressing the demographic, socio-economic, and institutional constraints to strengthen off-farm income diversification strategies to improve the income of rural households.

Keywords: off-farm, incoem, diversification, logit model

Procedia PDF Downloads 55
14596 Longitudinal Study of the Phenomenon of Acting White in Hungarian Elementary Schools Analysed by Fixed and Random Effects Models

Authors: Lilla Dorina Habsz, Marta Rado

Abstract:

Popularity is affected by a variety of factors in the primary school such as academic achievement and ethnicity. The main goal of our study was to analyse whether acting white exists in Hungarian elementary schools. In other words, we observed whether Roma students penalize those in-group members who obtain the high academic achievement. Furthermore, to show how popularity is influenced by changes in academic achievement in inter-ethnic relations. The empirical basis of our research was the 'competition and negative networks' longitudinal dataset, which was collected by the MTA TK 'Lendület' RECENS research group. This research followed 11 and 12-year old students for a two-year period. The survey was analysed using fixed and random effect models. Overall, we found a positive correlation between grades and popularity, but no evidence for the acting white effect. However, better grades were more positively evaluated within the majority group than within the minority group, which may further increase inequalities.

Keywords: academic achievement, elementary school, ethnicity, popularity

Procedia PDF Downloads 200
14595 Security of Database Using Chaotic Systems

Authors: Eman W. Boghdady, A. R. Shehata, M. A. Azem

Abstract:

Database (DB) security demands permitting authorized users and prohibiting non-authorized users and intruders actions on the DB and the objects inside it. Organizations that are running successfully demand the confidentiality of their DBs. They do not allow the unauthorized access to their data/information. They also demand the assurance that their data is protected against any malicious or accidental modification. DB protection and confidentiality are the security concerns. There are four types of controls to obtain the DB protection, those include: access control, information flow control, inference control, and cryptographic. The cryptographic control is considered as the backbone for DB security, it secures the DB by encryption during storage and communications. Current cryptographic techniques are classified into two types: traditional classical cryptography using standard algorithms (DES, AES, IDEA, etc.) and chaos cryptography using continuous (Chau, Rossler, Lorenz, etc.) or discreet (Logistics, Henon, etc.) algorithms. The important characteristics of chaos are its extreme sensitivity to initial conditions of the system. In this paper, DB-security systems based on chaotic algorithms are described. The Pseudo Random Numbers Generators (PRNGs) from the different chaotic algorithms are implemented using Matlab and their statistical properties are evaluated using NIST and other statistical test-suits. Then, these algorithms are used to secure conventional DB (plaintext), where the statistical properties of the ciphertext are also tested. To increase the complexity of the PRNGs and to let pass all the NIST statistical tests, we propose two hybrid PRNGs: one based on two chaotic Logistic maps and another based on two chaotic Henon maps, where each chaotic algorithm is running side-by-side and starting from random independent initial conditions and parameters (encryption keys). The resulted hybrid PRNGs passed the NIST statistical test suit.

Keywords: algorithms and data structure, DB security, encryption, chaotic algorithms, Matlab, NIST

Procedia PDF Downloads 265
14594 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 375
14593 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India

Authors: Jonardan Koner

Abstract:

The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.

Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model

Procedia PDF Downloads 371
14592 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median

Procedia PDF Downloads 203
14591 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 247
14590 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
14589 The Role of Temporary Migration as Coping Mechanism of Weather Shock: Evidence from Selected Semi-Arid Tropic Villages in India

Authors: Kalandi Charan Pradhan

Abstract:

In this study, we investigate does weather variation determine temporary labour migration using 210 sample households from six Semi-Arid Tropic (SAT) villages for the period of 2005-2014 in India. The study has made an attempt to examine how households use temporary labour migration as a coping mechanism to minimise the risk rather than maximize the utility of the households. The study employs panel Logit regression model to predict the probability of household having at least one temporary labour migrant. As per as econometrics result, it is found that along with demographic and socioeconomic factors; weather variation plays an important role to determine the decision of migration at household level. In order to capture the weather variation, the study uses mean crop yield deviation over the study periods. Based on the random effect logit regression result, the study found that there is a concave relationship between weather variation and decision of temporary labour migration. This argument supports the theory of New Economics of Labour Migration (NELM), which highlights the decision of labour migration not only maximise the households’ utility but it helps to minimise the risks.

Keywords: temporary migration, socioeconomic factors, weather variation, crop yield, logit estimation

Procedia PDF Downloads 223
14588 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 506
14587 Frailty and Quality of Life among Older Adults: A Study of Six LMICs Using SAGE Data

Authors: Mamta Jat

Abstract:

Background: The increased longevity has resulted in the increase in the percentage of the global population aged 60 years or over. With this “demographic transition” towards ageing, “epidemiologic transition” is also taking place characterised by growing share of non-communicable diseases in the overall disease burden. So, many of the older adults are ageing with chronic disease and high levels of frailty which often results in lower levels of quality of life. Although frailty may be increasingly common in older adults, prevention or, at least, delay the onset of late-life adverse health outcomes and disability is necessary to maintain the health and functional status of the ageing population. This is an effort using SAGE data to assess levels of frailty and its socio-demographic correlates and its relation with quality of life in LMICs of India, China, Ghana, Mexico, Russia and South Africa in a comparative perspective. Methods: The data comes from multi-country Study on Global AGEing and Adult Health (SAGE), consists of nationally representative samples of older adults in six low and middle-income countries (LMICs): China, Ghana, India, Mexico, the Russian Federation and South Africa. For our study purpose, we will consider only 50+ year’s respondents. The logistic regression model has been used to assess the correlates of frailty. Multinomial logistic regression has been used to study the effect of frailty on QOL (quality of life), controlling for the effect of socio-economic and demographic correlates. Results: Among all the countries India is having highest mean frailty in males (0.22) and females (0.26) and China with the lowest mean frailty in males (0.12) and females (0.14). The odds of being frail are more likely with the increase in age across all the countries. In India, China and Russia the chances of frailty are more among rural older adults; whereas, in Ghana, South Africa and Mexico rural residence is protecting against frailty. Among all countries china has high percentage (71.46) of frail people in low QOL; whereas Mexico has lowest percentage (36.13) of frail people in low QOL.s The risk of having low and middle QOL is significantly (p<0.001) higher among frail elderly as compared to non–frail elderly across all countries with controlling socio-demographic correlates. Conclusion: Women and older age groups are having higher frailty levels than men and younger aged adults in LMICs. The mean frailty scores demonstrated a strong inverse relationship with education and income gradients, while lower levels of education and wealth are showing higher levels of frailty. These patterns are consistent across all LMICs. These data support a significant role of frailty with all other influences controlled, in having low QOL as measured by WHOQOL index. Future research needs to be built on this evolving concept of frailty in an effort to improve quality of life for frail elderly population, in LMICs setting.

Keywords: Keywords: Ageing, elderly, frailty, quality of life

Procedia PDF Downloads 288
14586 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
14585 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 66
14584 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator

Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib

Abstract:

Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.

Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model

Procedia PDF Downloads 306
14583 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 388
14582 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density

Authors: Lalit Kumar, Rashid Al Shidi

Abstract:

Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.

Keywords: dubas bug, date palm, tree density, infestation levels

Procedia PDF Downloads 193
14581 Effects of Cash Transfers Mitigation Impacts in the Face of Socioeconomic External Shocks: Evidence from Egypt

Authors: Basma Yassa

Abstract:

Evidence on cash transfers’ effectiveness in mitigating macro and idiosyncratic shocks’ impacts has been mixed and is mostly concentrated in Latin America, Sub-Saharan Africa, and South Asia with very limited evidence from the MENA region. Yet conditional cash transfers schemes have been continually used, especially in Egypt, as the main social protection tool in response to the recent socioeconomic crises and macro shocks. We use 2 panel datasets and 1 cross-sectional dataset to estimate the effectiveness of cash transfers as a shock-mitigative mechanism in the Egyptian context. In this paper, the results from the different models (Panel Fixed Effects model and the Regression Discontinuity Design (RDD) model) confirm that micro and macro shocks lead to significant decline in several household-level welfare outcomes and that Takaful cash transfers have a significant positive impact in mitigating the negative shock impacts, especially on households’ debt incidence, debt levels, and asset ownership, but not necessarily on food, and non-food expenditure levels. The results indicate large positive significant effects on decreasing household incidence of debt by up to 12.4 percent and lowered the debt size by approximately 18 percent among Takaful beneficiaries compared to non-beneficiaries’. Similar evidence is found on asset ownership levels, as the RDD model shows significant positive effects on total asset ownership and productive asset ownership, but the model failed to detect positive impacts on per capita food and non-food expenditures. Further extensions are still in progress to compare the models’ results with the DID model results when using a nationally representative ELMPS panel data (2018/2024) rounds. Finally, our initial analysis suggests that conditional cash transfers are effective in buffering the negative shock impacts on certain welfare indicators even after successive macro-economic shocks in 2022 and 2023 in the Egyptian Context.

Keywords: cash transfers, fixed effects, household welfare, household debt, micro shocks, regression discontinuity design

Procedia PDF Downloads 46
14580 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 189
14579 Family Values and Honest Attitudes in Pakistan: The Role of Tolerance and Justice Attitudes

Authors: Muhammad Shoaib

Abstract:

The aim of the study is to examine the effects of family values on honest attitudes by the mediation of tolerance attitudes and justice attitudes among family members. As many other developing settings, Pakistani society is undergoing a rapid and multifaceted social changes, in which traditional thinking coexists and often clashes with modern thinking. Family values have great effects on the honest attitudes among family members as well as all the members of Pakistani society. Tolerance attitudes, justice attitudes, personal experiences and modernity factors are contributing to the development of honest attitudes among family members. Family values attitudes enhance the concept of honesty feelings, fairness, and less thinking towards theft. For the present study 520 respondents were sampled from two urban areas of Punjab province; Lahore and Faisalabad, through proportionate random sampling technique. A survey method was used as a technique of data collection and an interview schedule was administered to collect information from the respondents. The results shows similar positive effects of tolerance and justice attitudes on honest attitude by the mediation of family values attitudes.

Keywords: family values, tolerance, justice, honesty, attitudes, Pakistan

Procedia PDF Downloads 446
14578 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values

Authors: Daniel Fundi Murithi

Abstract:

Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.

Keywords: finite population total, missing data, model-based imputation, two-phase sampling

Procedia PDF Downloads 131
14577 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
14576 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324
14575 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data

Authors: Linyi Fan, C.J. Schumaker

Abstract:

Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.

Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling

Procedia PDF Downloads 135
14574 A Novel Approach towards Test Case Prioritization Technique

Authors: Kamna Solanki, Yudhvir Singh, Sandeep Dalal

Abstract:

Software testing is a time and cost intensive process. A scrutiny of the code and rigorous testing is required to identify and rectify the putative bugs. The process of bug identification and its consequent correction is continuous in nature and often some of the bugs are removed after the software has been launched in the market. This process of code validation of the altered software during the maintenance phase is termed as Regression testing. Regression testing ubiquitously considers resource constraints; therefore, the deduction of an appropriate set of test cases, from the ensemble of the entire gamut of test cases, is a critical issue for regression test planning. This paper presents a novel method for designing a suitable prioritization process to optimize fault detection rate and performance of regression test on predefined constraints. The proposed method for test case prioritization m-ACO alters the food source selection criteria of natural ants and is basically a modified version of Ant Colony Optimization (ACO). The proposed m-ACO approach has been coded in 'Perl' language and results are validated using three examples by computation of Average Percentage of Faults Detected (APFD) metric.

Keywords: regression testing, software testing, test case prioritization, test suite optimization

Procedia PDF Downloads 338
14573 The Effects of Governmental Regulation on Technological Innovation in Korean Firms

Authors: SeungKu Ahn, Sewon Lee

Abstract:

This study examines the effects of regulatory policies on corporate R&D activities and innovation and suggests regulatory directions for the enhancement of corporate performance. This study employs a regression model with R&D activities as dependent variables and the regulatory index as an independent variable. The results of this study are as follows: The regulation is negatively associated with the input and output of R&D activities. The regulation encourages small and medium-sized firms to invest in R&D. The regulation has a positive effect on patent applications for small and medium-sized firms.

Keywords: governmental regulation, research and development performance, small and medium-sized firms, technological innovation

Procedia PDF Downloads 268