Search results for: limiting amplitude
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1145

Search results for: limiting amplitude

635 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 78
634 Challenging the Theory of Mind: Autism Spectrum Disorder, Social Construction, and Biochemical Explanation

Authors: Caroline Kim

Abstract:

The designation autism spectrum disorder (ASD) groups complex disorders in the development of the brain. Autism is defined essentially as a condition in which an individual lacks a theory of mind. The theory of mind, in this sense, explains the ability of an individual to attribute feelings, emotions, or thoughts to another person. An autistic patient is characteristically unable to determine what an interlocutor is feeling, or to understand the beliefs of others. However, it is possible that autism cannot plausibly characterized as the lack of theory of mind in an individual. Genes, the bran, and its interplay with environmental factors may also cause autism. A mutation in a gene may be hereditary, or instigated by diseases such as mumps. Though an autistic patient may experience abnormalities in the cerebellum and the cortical regions, these are in fact only possible theories as to a biochemical explanation behind the disability. The prevailing theory identifying autism with lacking the theory of mind is supported by behavioral observation, but this form of observation is itself determined by socially constructed standards, limiting the possibility for empirical verification. The theory of mind infers that the beliefs and emotions of people are causally based on their behavior. This paper demonstrates the fallacy of this inference, critiquing its basis in socially constructed values, and arguing instead for a biochemical approach free from the conceptual apparatus of language and social expectation.

Keywords: autism spectrum disorder, sociology of psychology, social construction, the theory of mind

Procedia PDF Downloads 403
633 Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage

Authors: Fatiha Aouabed, Abdelhafid Bayadi, Rabah Boudissa

Abstract:

Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed.

Keywords: contamination, flashover, testing, silicone rubber insulators, surface wettability, water droplets

Procedia PDF Downloads 442
632 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 148
631 A Variable Speed DC Motor Using a Converter DC-DC

Authors: Touati Mawloud

Abstract:

Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.

Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices

Procedia PDF Downloads 442
630 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 134
629 Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: internal dosimetry, Lutetium-177, radar, animals

Procedia PDF Downloads 372
628 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology

Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert

Abstract:

The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.

Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle

Procedia PDF Downloads 285
627 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control

Procedia PDF Downloads 365
626 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models

Authors: Bipasha Sen, Aditya Agarwal

Abstract:

Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.

Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition

Procedia PDF Downloads 123
625 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
624 Seismic Stratigraphy of the First Deposits of the Kribi-Campo Offshore Sub-basin (Gulf of Guinea): Pre-cretaceous Early Marine Incursion and Source Rocks Modeling

Authors: Mike-Franck Mienlam Essi, Joseph Quentin Yene Atangana, Mbida Yem

Abstract:

The Kribi-Campo sub-basin belongs to the southern domain of the Cameroon Atlantic Margin in the Gulf of Guinea. It is the African homologous segment of the Sergipe-Alagoas Basin, located at the northeast side of the Brazil margin. The onset of the seafloor spreading period in the Southwest African Margin in general and the study area particularly remains controversial. Various studies locate this event during the Cretaceous times (Early Aptian to Late Albian), while others suggested that this event occurred during Pre-Cretaceous period (Palaeozoic or Jurassic). This work analyses 02 Cameroon Span seismic lines to re-examine the Early marine incursion period of the study area for a better understanding of the margin evolution. The methodology of analysis in this study is based on the delineation of the first seismic sequence, using the reflector’s terminations tracking and the analysis of its internal reflections associated to the external configuration of the package. The results obtained indicate from the bottom upwards that the first deposits overlie a first seismic horizon (H1) associated to “onlap” terminations at its top and underlie a second horizon which shows “Downlap” terminations at its top (H2). The external configuration of this package features a prograded fill pattern, and it is observed within the depocenter area with discontinuous reflections that pinch out against the basement. From east to west, this sequence shows two seismic facies (SF1 and SF2). SF1 has parallel to subparallel reflections, characterized by high amplitude, and SF2 shows parallel and stratified reflections, characterized by low amplitude. The distribution of these seismic facies reveals a lateral facies variation observed. According to the fundamentals works on seismic stratigraphy and the literature review of the geological context of the study area, particularly, the stratigraphical natures of the identified horizons and seismic facies have been highlighted. The seismic horizons H1 and H2 correspond to Top basement and “Downlap Surface,” respectively. SF1 indicates continental sediments (Sands/Sandstone) and SF2 marine deposits (shales, clays). Then, the prograding configuration observed suggests a marine regression. The correlation of these results with the lithochronostratigraphic chart of Sergipe-Alagoas Basin reveals that the first marine deposits through the study area are dated from Pre-Cretaceous times (Palaeozoic or Jurassic). The first deposits onto the basement represents the end of a cycle of sedimentation. The hypothesis of Mike.F. Mienlam Essi is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Joseph.Q. Yene Atangana is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Mbida Yem is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Cretaceous seafloor spreading through the study area is the onset of another cycle of sedimentation. Furthermore, the presence of marine sediments into the first deposits implies that this package could contain marine source rocks. The spatial tracking of these deposits reveals that they could be found in some onshore parts of the Kribi-Campo area or even in the northern side.

Keywords: cameroon span seismic, early marine incursion, kribi-campo sub-basin, pre-cretaceous period, sergipe-alagoas basin

Procedia PDF Downloads 107
623 Sensitivity Analysis of Movable Bed Roughness Formula in Sandy Rivers

Authors: Mehdi Fuladipanah

Abstract:

Sensitivity analysis as a technique is applied to determine influential input factors on model output. Variance-based sensitivity analysis method has more application compared to other methods because of including linear and non-linear models. In this paper, van Rijn’s movable bed roughness formula was selected to evaluate because of its reasonable results in sandy rivers. This equation contains four variables as: flow depth, sediment size,bBed form height and bed form length. These variable’s importance was determined using the first order of Fourier Amplitude Sensitivity Test. Sensitivity index was applied to evaluate importance of factors. The first order FAST based sensitivity indices test, explain 90% of the total variance that is indicating acceptance criteria of FAST application. More value of this index is indicating more important variable. Results show that bed form height, bed form length, sediment size and flow depth are more influential factors with sensitivity index: 32%, 24%, 19% and 15% respectively.

Keywords: sdensitivity analysis, variance, movable bed roughness formula, Sandy River

Procedia PDF Downloads 261
622 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 112
621 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 126
620 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm

Authors: Mahmoud Enayati, Sirous Mohammadi

Abstract:

In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.

Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm

Procedia PDF Downloads 532
619 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 140
618 Discussion on Dispersion Curves of Non-penetrable Soils from in-Situ Seismic Dilatometer Measurements

Authors: Angelo Aloisio Dag, Pasquale Pasca, Massimo Fragiacomo, Ferdinando Totani, Gianfranco Totani

Abstract:

The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The authors report the results of site characterization in Macerata, where they measured the Vs using the seismic dilatometer in a 100m deep borehole. The standard Vs estimation originates from the cross-correlation between the signals acquired by two geophones at increasing depths. This paper focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of Lamb waves may be notable up to 100m depth. The amplitude of surface waves decrease rapidly with depth: still, their influence may be essential up to depths considered unusual for standard geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena. The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the importance of Lamb waves in soil characterization.

Keywords: dispersion curve, seismic dilatometer, shear wave, soil mechanics

Procedia PDF Downloads 172
617 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 145
616 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 321
615 Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy.

Keywords: circular cylinder, vortex-shedding, VIV, wake-induced, vibrations

Procedia PDF Downloads 366
614 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 169
613 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 483
612 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome Not Affecting Median versus Ulnar Comparative Studies

Authors: Emmanuel Kamal Aziz Saba, Sarah Sayed El-Tawab

Abstract:

The present study was conducted to assess the involvement of ulnar sensory and/or motor nerve fibers in patients with carpal tunnel syndrome (CTS) and whether this affects the accuracy of the median versus ulnar comparative tests. The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done. The following tests were done: Sensory conduction studies: median, ulnar and dorsal ulnar cutaneous nerves; and median versus ulnar digit (D) four sensory comparative study; and motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. In conclusion, there is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. This does not affect the median versus ulnar sensory and motor comparative tests accuracy for use in CTS.

Keywords: median nerve, motor comparative study, sensory comparative study, ulnar nerve

Procedia PDF Downloads 429
611 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 278
610 Microstracture of Iranian Processed Cheese

Authors: R. Ezzati, M. Dezyani, H. Mirzaei

Abstract:

The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, cheddar cheese, emulsifying salt, rheology

Procedia PDF Downloads 443
609 Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece

Authors: E. K. Tripsanas, D. Spanos, I. Oikonomopoulos, K. Stathopoulou, A. S. Abdelsamad, A. Pagoulatos

Abstract:

Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.

Keywords: sequence stratigraphy, basin analysis, river deltas, submarine channels

Procedia PDF Downloads 322
608 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation

Procedia PDF Downloads 306
607 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 287
606 Impact of Tobacco Control Policy to Cancer Mortalities in South Africa

Authors: Cyprian M. Mostert

Abstract:

This paper investigates the effectiveness of tobacco control policy (TCP) in averting cancer mortalities in both educated and uneducated segments of the South African population. A two-stage least squares model (2SLS) was used covering the period 2009-2013. The results show that the TCP caused a 26 percent average decrease in cancer mortalities in both educated and uneducated segment of the population. However, limiting the sales of cheap and illegal tobacco cigarettes is necessary for advancing the effectiveness of TCP in averting cancer mortalities in the uneducated population — as the paper noted an insignificant decrease in cancer mortalities in 2012-2013 due to the presence of cheaper cigarettes. The paper also discovered evidence of persisting tobacco purchases of branded cigarettes in the educated population group which limited the effectiveness of TCP in 2009-2011. Hikes in real tobacco tax to a 0.8 USD price level in 2012 limited tobacco consumption in the educated group resulting in a 29 percent decrease in cancer mortalities. Other developing countries may learn from the South African case and strive to limit the sales of cheap illegal cigarettes while hiking real tobacco tax of branded cigarettes as a key strategy to improve cancer deaths across educated and uneducated population groups.

Keywords: cancer, health policy, health system, tobacco tax

Procedia PDF Downloads 145