Search results for: least squares regression
2950 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2892949 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna
Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,
Abstract:
The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift
Procedia PDF Downloads 3062948 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise
Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke
Abstract:
Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.Keywords: BSR, noise, correlation, regression
Procedia PDF Downloads 782947 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran
Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton
Abstract:
The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion
Procedia PDF Downloads 662946 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan
Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed
Abstract:
This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis
Procedia PDF Downloads 722945 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 3122944 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 1592943 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression
Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily
Abstract:
Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression
Procedia PDF Downloads 2292942 Predictors of School Safety Awareness among Malaysian Primary School Teachers
Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin
Abstract:
With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools
Procedia PDF Downloads 4652941 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 3392940 The Olympic Games’ Effect on National Company Growth
Authors: Simon Strande Henriksen
Abstract:
When a city and country decide to undertake an Olympic Games, they do so with the notion that hosting the Olympics will provide direct financial benefits to the city, country, and national companies. Like many activities, the Olympic Games tend to be more popular when it is warm, and the athletes are known, and therefore this paper will only focus on the two latest Olympic Summer Games. Cities and countries continue to invest billions of dollars in infrastructure to secure the role of being Olympic hosts. The multiple investments expect to provide both economic growth and a lasting legacy for the citizens. This study aims to determine whether host country companies experience superior economic impact from the Olympics. Building on existing work within the Olympic field of research, it asks: Do companies in host countries of the Olympic Summer Games experience a superior increase in operating revenue and return on assets compared to other comparable countries? In this context, comparable countries are the two candidates following the host city in the bidding procedure. Based on methods used by scholars, a panel data regression was conducted on revenue growth rate and return on assets, to determine if host country companies see a positive relation with hosting the Olympic Games. Combined with an analysis of motivation behind hosting the Olympics, the regression showed no significant positive relations across all analyses, besides in one instance. Indications of a relationship between company performance and economic motivation were found to be present. With the results indicating a limited effect on company growth, it is recommended that prospective host cities and countries carefully consider possible implications the role of being an Olympic host might have on national companies.Keywords: cross-country analysis, mega-event, multiple regression, quantitative analysis
Procedia PDF Downloads 1402939 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric Tuberculosis Patients
Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam
Abstract:
Background: The worldwide increase in pediatric presumptive tuberculosis (TB) is the most life-threatening challenge in effectively controlling TB. The objective of this study was to determine the proportion of presumptive TB and the factors associated with it. Methods: A cross-sectional study was conducted between March and November 2013 at ICDDR-Bangladesh. Two hundred twelve pulmonary and extra-pulmonary specimens were collected from 84 suspected pediatric patients diagnosed with TB based on their clinical symptoms/radiological findings. Presumptive TB and confirmed TB were considered presumptive TB and non-presumptive TB and were isolated by smear-microscopy, culture, and GeneXpert. Logistic regression was used to analyze associations between outcome and predictor variables. Results: The proportion of presumptive TB was 85.7%, and 14.3% of non-presumptive TB. In presumptive TB, vaccine scars, family TB history, and school-going children were 16.6%, 33.3%, and 56.9%, respectively. In contrast, vaccine scars and family TB history were 8.3%, and school-going children were 58.3% in non-presumptive TB. Significant factors did not appear in the logistic regression analysis. Conclusion: Despite the high proportion of presumptive TB, there was no statistically significant between presumptive TB and non-presumptive TB.Keywords: presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis
Procedia PDF Downloads 482938 Cryptocurrencies: Business Students’ Awareness and Universities’ Adoption Readiness and Compatibility of Use Considering the Mediation of Attitudes
Authors: Eric S. Parilla, Marc Edward Abadilla
Abstract:
The study aims to determine the effect of awareness of business students towards cryptocurrencies and the readiness of universities and colleges to accept cryptocurrencies as a medium of exchange, considering the mediation of business students’ attitudes. The research used partial least squares structural equation modeling (PLS-SEM) and deployed a questionnaire attuned to the awareness and attitudes of business students towards cryptocurrencies and readiness and compatibility of use in universities and colleges in Ilocos Norte. The output of the investigation revealed that awareness of business students is not correlated to the readiness of universities and colleges, which means that even though students understand cryptocurrencies, it is not an assurance that universities and colleges are ready to accept them as the medium of exchange. The study proposes that training and seminars for business students and professionals should be conducted to expand understanding and acceptance of cryptocurrencies.Keywords: cryptocurrencies, awareness, readiness, attitudes
Procedia PDF Downloads 2232937 Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications
Authors: Lincy Stephen, N. Yogesh, G. Vasantharajan, V. Subramanian
Abstract:
This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction.Keywords: electromagnetic absorber, metamaterial, multi- band, polarization insensitive, wide angle receptive
Procedia PDF Downloads 3392936 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis
Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang
Abstract:
Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression
Procedia PDF Downloads 4212935 Marketing in the Age of Artificial Intelligence: Implications for Consumption Patterns of Halal Food
Authors: Djermani Farouk, Sri Rahayu Hijrah Hati, Fenitra Maminirin, Permata Wulandari
Abstract:
This study investigates the implications of Artificial Intelligence Marketing (AIM) marketing mix (PRD) Product, (PRC) Price, (PRM), Promotion and (PLC) Place on consumption patterns of halal food (CPHF). A quantitative approach was adopted in this study and responses were obtained from 350 Indonesian consumers. Using Partial Least Squares-Structural Equation Modeling (PLS-SEM), the results show that there is a direct support of marketing mix (PRD, PRC, PLC) to AIM and CPHF, while PRM does not play a significant role in CPHF. In addition, the findings reveal that AIM mediates significantly the relationship between PLC, PRC and PRM and CPHF, while AIM indicates no mediation between PRD and CPHF. Indonesian consumer’s exhibit serious concerns with consumption patterns of halal food. it is recommended that managers focus their attention on marketing strategies to predict consumer behavior in terms of consumption patterns of halal food through the integration of AIM.Keywords: marketing mix, consumption patterns, artificial intelligence marketing, Halal food
Procedia PDF Downloads 312934 Retirement and Tourism Consumption - Evidence from the Elderly in China
Authors: Sha Fan, Renuka Mahadevan
Abstract:
In recent years, the subject of how retirement influences consumption behaviours has garnered attention in economic research. However, a significant gap persists in our understanding of how retirement precisely impacts tourism consumption patterns among the elderly demographic. To address this gap, this research conducts an in-depth exploration into the multifaceted relationship between retirement and elderly tourism consumption.To achieve this, the study employs regression discontinuity design, using three waves of panel data from China covering a span of six years. This approach aims to identify the causality between retirement and tourism consumption. Furthermore, the study scrutinizes the pathways through which retirement's impact on tourism consumption unfolds. It adopts a dual-pronged perspective, examining the roles played by economic status and the availability of leisure time. The economic dimension underscores the financial adjustments that retirees make as they transition into a new phase of life, impacting their propensity to allocate resources towards tourism activities. Meanwhile, considering leisure time recognizes that retirement often heralds an era of newfound freedom, allowing retirees the luxury to engage in leisurely pursuits like tourism.Keywords: tourism consumption, retirement, the elderly, regression discontinuity design
Procedia PDF Downloads 672933 Predicting Marital Burnout Based on Irrational Beliefs and Sexual Dysfunction of Couples
Authors: Elnaz Bandeh
Abstract:
This study aimed to predict marital burnout based on irrational beliefs and sexual dysfunction of couples. The research method was descriptive-correlational, and the statistical population included all couples who consulted to counseling clinics in the fall of 2016. The sample consisted of 200 people who were selected by convenience sampling and answered the Ahwaz Irrational Beliefs Questionnaire, Pines Couple Burnout, and Hudson Marital Satisfaction Questionnaire. The data were analyzed using regression coefficient. The results of regression analysis showed that there was a linear relationship between irrational beliefs and couple burnout and dimensions of helplessness toward change, expectation of approval from others, and emotional irresponsibility were positive and significant predictors of couple burnout. However, after avoiding the problem of power, it was not a significant predictor of marital dissatisfaction. There was also a linear relationship between sexual dysfunction and couple burnout, and sexual dysfunction was a positive and significant predictor of couple burnout. Based on the findings, it can be concluded that irrational beliefs and sexual dysfunction play a role in couple dysfunction.Keywords: couple burnout, irrational beliefs, sexual dysfunction, marital relationship
Procedia PDF Downloads 1532932 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 4492931 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1552930 Design, Modeling, Fabrication, and Testing of a Scaled down Hybrid Rocket Engine
Authors: Pawthawala Nancy Manish, Syed Alay Hashim
Abstract:
A hybrid rocket is a rocket engine which uses propellants in two different states of matter- one is in solid and the other either gas or liquid. A hybrid rocket exhibit advantages over both liquid rockets and solid rockets especially in terms of simplicity, stop-start-restart capabilities, safety and cost. This paper deals the design and development of a hybrid rocket having paraffin wax as solid fuel and liquid oxygen as oxidizer. Due to variation of pressure in combustion chamber there is significantly change in mass flow rate, burning rate and uneven regression along the length of the grain. This project describes the working model of a hybrid propellant rocket motor. We have designed a hybrid rocket thrust chamber based on the predetermined combustion chamber pressure and the properties of hybrid propellant. This project is all ready in working condition with normal oxygen injector. Now we have planned to modify the injector design to improve the combustion property. We will use spray type injector for injecting the oxidizer. This idea will increase the performance followed by the regression rate of the solid fuel. By employing mass conservation law, oxygen mass flux, oxidizer/fuel ratio and regression rate the thrust coefficient can be obtained for our current design. CATIA V5 R20 is our design software for the complete setup. This project is fully based on experimental evaluation and the collection of combustion and flow parameters. The thrust chamber is made of stainless steel and the duration of test is around 15-20 seconds (Maximum). These experiments indicates that paraffin based fuel provides the opportunity to satisfy a broad range of mission requirements for the next generation of the hybrid rocket system.Keywords: burning rate, liquid oxygen, mass flow rate, paraffin wax and sugar
Procedia PDF Downloads 3332929 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5592928 The Existence of a Sciatic Artery in Congenital Lower Limb Deformities
Authors: Waseem Al Talalwah, Shorok Al Dorazi, Roger Soames
Abstract:
Persistent sciatic artery is a rare anatomical vascular variation resulting from a lack of regression of the embryonic dorsal axial artery. The axial artery is the main artery supplying the lower limb during development in the first trimester. The current research includes 206 sciatic artery cases in 171 patients between 1864 and 2012. It aims to identify the risk factor of sciatic artery aneurysm in congenital limb anomalies. Sciatic artery aneurysm was diagnosed incidentally in amniotic band syndrome (ABS) existing with no congenital anomaly in 0.7% or with double knee in 0.7%, with the tibia in 0.7% and with hemihypertrophy or soft tissue hypertrophy in 1.4%. Therefore, the current study indicates a relationship the same gene responsible for the congenital limb deformities may be responsible for non-regression of the sciatic artery. Furthermore, pediatricians should refer cases of congenital limb anomalies for vascular evaluation prior to corrective surgical intervention.Keywords: amniotic band syndrome, congenital limb deformities, double knee, sciatic artery, sciatic artery aneurysm , soft tissue hypertrophy
Procedia PDF Downloads 3742927 Parents of Mentally Disabled Children in Iran: A Study of Their Parenting Stress Levels and Mental Health
Authors: Mohsen Amiri
Abstract:
This study aimed at investigating the relationship between familial functioning, child characteristics, demographic variables and parenting stress and mental health among parents of children with mental disabilities. 200 parents (130 mothers and 70 fathers) were studied and they completed the Parenting Stress Index, General Health Questionnaire, Family Assessment Device and demographic questionnaires for parents and children. Data were analyzed using correlation and regression analysis. Regression analysis showed that child characteristics, familial functioning and parents demographic factors could predict 8, 4 and 17 percent of variance in parental stress and 3.6, 16 and 10 percent of variance in mental health, respectively. Familial functioning, child characteristics and parental demographic variables correlated with mental health and parental stress and could predict them.Keywords: parenting stress, mental health, mentally disabled children, familial functioning, demographic variables
Procedia PDF Downloads 4442926 Dietary Pattern derived by Reduced Rank Regression is Associated with Reduced Cognitive Impairment Risk in Singaporean Older Adults
Authors: Kaisy Xinhong Ye, Su Lin Lim, Jialiang Li, Lei Feng
Abstract:
background: Multiple healthful dietary patterns have been linked with dementia, but limited studies have looked at the role of diet in cognitive health in Asians whose eating habits are very different from their counterparts in the west. This study aimed to derive a dietary pattern that is associated with the risk of cognitive impairment (CI) in the Singaporean population. Method: The analysis was based on 719 community older adults aged 60 and above. Dietary intake was measured using a validated semi-quantitative food-frequency questionnaire (FFQ). Reduced rank regression (RRR) was used to extract dietary pattern from 45 food groups, specifying sugar, dietary fiber, vitamin A, calcium, and the ratio of polyunsaturated fat to saturated fat intake (P:S ratio) as response variables. The RRR-derived dietary patterns were subsequently investigated using multivariate logistic regression models to look for associations with the risk of CI. Results: A dietary pattern characterized by greater intakes of green leafy vegetables, red-orange vegetables, wholegrains, tofu, nuts, and lower intakes of biscuits, pastries, local sweets, coffee, poultry with skin, sugar added to beverages, malt beverages, roti, butter, and fast food was associated with reduced risk of CI [multivariable-adjusted OR comparing extreme quintiles, 0.29 (95% CI: 0.11, 0.77); P-trend =0.03]. This pattern was positively correlated with P:S ratio, vitamin A, and dietary fiber and negatively correlated with sugar. Conclusion: A dietary pattern providing high P:S ratio, vitamin A and dietary fiber, and a low level of sugar may reduce the risk of cognitive impairment in old age. The findings have significance in guiding local Singaporeans to dementia prevention through food-based dietary approaches.Keywords: dementia, cognitive impairment, diet, nutrient, elderly
Procedia PDF Downloads 812925 Fiscal Size and Composition Effects on Growth: Empirical Evidence from Asian Economies
Authors: Jeeban Amgain
Abstract:
This paper investigates the impact of the size and composition of government expenditure and tax on GDP per capita growth in 36 Asian economies over the period of 1991-2012. The research employs the technique of panel regression; Fixed Effects and Generalized Method of Moments (GMM) as well as other statistical and descriptive approaches. The finding concludes that the size of government expenditure and tax revenue are generally low in this region. GDP per capita growth is strongly negative in response to Government expenditure, however, no significant relationship can be measured in case of size of taxation although it is positively correlated with economic growth. Panel regression of decomposed fiscal components also shows that the pattern of allocation of expenditure and taxation really matters on growth. Taxes on international trade and property have a significant positive impact on growth. In contrast, a major portion of expenditure, i.e. expenditure on general public services, health and education are found to have significant negative impact on growth, implying that government expenditures are not being productive in the Asian region for some reasons. Comparatively smaller and efficient government size would enhance the growth.Keywords: government expenditure, tax, GDP per capita growth, composition
Procedia PDF Downloads 4732924 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine
Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui
Abstract:
This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator
Procedia PDF Downloads 2862923 Determinants of Child Anthropometric Indicators: A Case Study of Mali in 2015
Authors: Davod Ahmadigheidari
Abstract:
The main objective of this study was to explore prevalence of anthropometric indicators as well the factors associated with the anthropometric indications in Mali. Data on 2015, downloaded from the website of Unicef, were analyzed. A total of 16,467 women (ages 15-49 years) and 16,467 children (ages 0-59 months) were selected for the sample. Different statistical analyses, such as descriptive, crosstabs and binary logistic regression form the basis of this study. Child anthropometric indicators (i.e., wasting, stunting, underweight and BMI for age) were used as the dependent variables. SPSS Syntax from WHO was used to create anthropometric indicators. Different factors, such as child’s sex, child’s age groups, child’s diseases symptoms (i.e., diarrhea, cough and fever), maternal education, household wealth index and area of residence were used as independent variables. Results showed more than forty percent of Malian households were in nutritional crises (stunting (42%) and underweight (34%). Findings from logistic regression analyses indicated that low score of wealth index, low maternal education and experience of diarrhea in last two weeks increase the probability of child malnutrition.Keywords: Mali, wasting, stunting, underweight, BMI for age and wealth index
Procedia PDF Downloads 1532922 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal
Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni
Abstract:
This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal
Procedia PDF Downloads 5012921 Food Insecurity Determinants Amidst the Covid-19 Pandemic: An Insight from Huntsville, Texas
Authors: Peter Temitope Agboola
Abstract:
Food insecurity continues to affect a large number of U.S households during this coronavirus COVID-19 pandemic. The pandemic has threatened the livelihoods of people, making them vulnerable to severe hardship and has had an unanticipated impact on the U.S economy. This study attempts to identify the food insecurity status of households and the determinant factors driving household food insecurity. Additionally, it attempts to discover the mitigation measures adopted by households during the pandemic in the city of Huntsville, Texas. A structured online sample survey was used to collect data, with a household expenditures survey used in evaluating the food security status of the household. Most survey respondents disclosed that the COVID-19 pandemic had affected their life and source of income. Furthermore, the main analytical tool used for the study is descriptive statistics and logistic regression modeling. A logistic regression model was used to determine the factors responsible for food insecurity in the study area. The result revealed that most households in the study area are food secure, with the remainder being food insecure.Keywords: food insecurity, household expenditure survey, COVID-19, coping strategies, food pantry
Procedia PDF Downloads 208