Search results for: hydrogen peroxide solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6457

Search results for: hydrogen peroxide solution

5947 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 150
5946 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 82
5945 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity

Authors: Manana Chumburidze, David Lekveishvili

Abstract:

We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.

Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution

Procedia PDF Downloads 500
5944 Antioxidant Efficacy of Lovi (Flacourtia inermis) Peel Extract in Edible Oils during Storage

Authors: Sasini U. G. Nanayakkara, Nishala E. Wedamulla, W. A. J. P. Wijesinghe

Abstract:

Lovi (Flacourtia inermis) is an underutilized fruit crop grown in Sri Lanka with promising antioxidant properties; thus, exhibits the great potential to use as a natural antioxidant. With the concern of synthetic antioxidants, there is a growing trend towards the addition of a natural antioxidant to retard the rancidity of edible oils. Hence, in this backdrop, extract obtained from the peel of F. inermis fruit was used to retard the rancidity of selected edible oils. Free fatty acid (FFA) content and peroxide value (PV) of sunflower oil (SO) and virgin coconut oil (VCO) were measured at 3-day intervals for 21 days at 65 ± 5°C after addition of extract at 500, 1000, 2000 ppm levels and α-tocopherol at 500 ppm level was used as positive control. SO and VCO without added extract was used as the control. The extract was prepared with 70% ethanol using ultrasound-assisted extraction, and antioxidant efficacy and total phenolic content (TPC) of the extract were measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and Folin-Ciocalteu method respectively. Antioxidant activity (IC50) and TPC of the extract were 227.14 ± 4.12 µgmL⁻¹ and 4.87 ± 0.01 mg GAE per gram, respectively. During the storage period, FFA content and PV of both oils were increased with time. However, SO showed comparatively high PV than that of VCO and thereby indicate the progression of lipid oxidation as PV is a good indicator of the extent of primary oxidative products formed in oils. The most effective extract concentration was 2000 ppm. After 21 days of storage, VCO (control) sample exhibited significantly (p < 0.05) high FFA (0.36%) and PV (1.93 meq kg⁻¹) than that of VCO with 1000 ppm (FFA: 0.35%; PV: 1.72 meq kg⁻¹) and 2000 ppm (FFA: 0.28%; PV: 1.19 meq kg-1) levels of extract. Thus, demonstrates the efficacy of lovi peel extract in retardation of lipid oxidation of edible oils during storage at higher concentrations of the extract addition. Moreover, FFA and PV of SO (FFA: 0.10%; PV: 12.38 meq kg⁻¹) and VCO (FFA: 0.28%; PV: 1.19 meq kg⁻¹) at 2000 ppm level of extract were significantly (p < 0.05) lower than that of positive control: SO with α-tocopherol (FFA: 0.22%, PV: 17.94 meq kg⁻¹) and VCO with α-tocopherol (FFA: 0.29%, PV: 1.39 meq kg⁻¹) after 21 days. Accordingly, lovi peel extract at 2000 ppm level was more effective than α-tocopherol in retardation of lipid oxidation of edible oils. In conclusion, lovi peel extract has strong antioxidant properties and can be used as a natural antioxidant to inhibit deteriorative oxidation of edible oils.

Keywords: antioxidant, Flacourtia inermis, peroxide value, virgin coconut oil

Procedia PDF Downloads 116
5943 An Improved Genetic Algorithm for Traveling Salesman Problem with Precedence Constraint

Authors: M. F. F. Ab Rashid, A. N. Mohd Rose, N. M. Z. Nik Mohamed, W. S. Wan Harun, S. A. Che Ghani

Abstract:

Traveling salesman problem with precedence constraint (TSPPC) is one of the most complex problems in combinatorial optimization. The existing algorithms to solve TSPPC cost large computational time to find the optimal solution. The purpose of this paper is to present an efficient genetic algorithm that guarantees optimal solution with less number of generations and iterations time. Unlike the existing algorithm that generates priority factor as chromosome, the proposed algorithm directly generates sequence of solution as chromosome. As a result, the proposed algorithm is capable of generating optimal solution with smaller number of generations and iteration time compare to existing algorithm.

Keywords: traveling salesman problem, sequencing, genetic algorithm, precedence constraint

Procedia PDF Downloads 547
5942 Renewable Energy and Hydrogen On-Site Generation for Drip Irrigation and Agricultural Machinery

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo, F. Javier García-Ramos

Abstract:

The energy used in agriculture is a source of global emissions of greenhouse gases. The two main types of this energy are electricity for pumping and diesel for agricultural machinery. In order to reduce these emissions, the European project LIFE REWIND addresses the supply of this demand from renewable sources. First of all, comprehensive data on energy demand and available renewable resources have been obtained in several case studies. Secondly, a set of simulations and optimizations have been performed, in search of the best configuration and sizing, both from an economic and emission reduction point of view. For this purpose, it was used software based on genetic algorithms. Thirdly, a prototype has been designed and installed, that it is being used for the validation in a real case. Finally, throughout a year of operation, various technical and economic parameters are being measured for further analysis. The prototype is not connected to the utility grid, avoiding the cost and environmental impact of a grid extension. The system includes three kinds of photovoltaic fields. One is located on a fixed structure on the terrain. Another one is floating on an irrigation raft. The last one is mounted on a two axis solar tracker. Each has its own solar inverter. The total amount of nominal power is 44 kW. A lead acid battery with 120 kWh of capacity carries out the energy storage. Three isolated inverters support a three phase, 400 V 50 Hz micro-grid, the same characteristics of the utility grid. An advanced control subsystem has been constructed, using free hardware and software. The electricity produced feeds a set of seven pumps used for purification, elevation and pressurization of water in a drip irrigation system located in a vineyard. Since the irrigation season does not include the whole year, as well as a small oversize of the generator, there is an amount of surplus energy. With this surplus, a hydrolyser produces on site hydrogen by electrolysis of water. An off-road vehicle with fuel cell feeds on that hydrogen and carries people in the vineyard. The only emission of the process is high purity water. On the one hand, the results show the technical and economic feasibility of stand-alone renewable energy systems to feed seasonal pumping. In this way, the economic costs, the environmental impacts and the landscape impacts of grid extensions are avoided. The use of diesel gensets and their associated emissions are also avoided. On the other hand, it is shown that it is possible to replace diesel in agricultural machinery, substituting it for electricity or hydrogen of 100% renewable origin and produced on the farm itself, without any external energy input. In addition, it is expected to obtain positive effects on the rural economy and employment, which will be quantified through interviews.

Keywords: drip irrigation, greenhouse gases, hydrogen, renewable energy, vineyard

Procedia PDF Downloads 333
5941 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 399
5940 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 261
5939 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 256
5938 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 390
5937 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.

Keywords: soybean, polyol, up-scaling, polyurethane

Procedia PDF Downloads 345
5936 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 323
5935 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space

Authors: Mohammad Farid

Abstract:

In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.

Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method

Procedia PDF Downloads 460
5934 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions

Authors: Karima Bourenane, Aissa Keffous

Abstract:

In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.

Keywords: silicon carbide, dissolution, Chemical etching, mechanism

Procedia PDF Downloads 39
5933 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation

Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla

Abstract:

Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.

Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol

Procedia PDF Downloads 327
5932 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 327
5931 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 331
5930 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 274
5929 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 367
5928 Protecting Physicochemical Properties of Black Cumin Seed (Nigella sativa) Oil and Developing Value Added Products

Authors: Zeliha Ustun, Mustafa Ersoz

Abstract:

In the study, a traditional herbal supplement black cumin seed (Nigella sativa) oil properties has been studied to protect the main quality parameters by a new supplement application. Black cumin seed and its oil is used as a dietary supplement and preferred traditional remedy in Africa, Asia and Middle East for centuries. Now it has been consuming by millions of people in America and Europe as natural supplements and/or phytotherapeutic agents to support immune system, asthma, allergic rinnitis etc. by the scientists’ advices. With the study, it is aimed to prove that soft gelatin capsules are a new and more practical way of usage for Nigella sativa oil that has a longer stability. With the study soft gelatin capsules formulation has been developed to protect cold pressed black cumin seed oil physicochemical properties for a longer period. The product design has been developed in laboratory and implemented in pilot scale soft gelatin capsule manufacturing. Physicochemical properties (peroxide value, free fatty acids, fatty acid composition, refractive index, iodine value, saponification value, unsaponifiable matters) of Nigella sativa oil soft gelatin capsules and Nigella sativa oil in liquid form in amber glass bottles have been compared and followed for 8 months. The main parameters for capsules and liquid form found that for free fatty acids 2.29±0.03, 3.92±0.11 % oleic acid, peroxide 23.11±1.18, 27.85±2.50 meqO2/kg, refractive index at 20 0C 1.4738±0.00, 1.4737±0.00, soap 0 ppm, moisture and volatility 0.32±0.01, 0.36±0.01 %, iodine value 123.00±0.00, 122.00±0.00 wijs, saponification value 196.25±0.46, 194.13±0.35 mg KOH/g and unsaponifiable matter 7.72±0.13, 6.88±0.36 g/kg respectively. The main fatty acids are found that linoleic acid 56.17%, oleic acid 24.64%, palmitic acid 11,94 %. As a result, it is found that cold pressed Nigella sativa oil soft gelatin capsules physicochemical properties are more stable than the Nigella sativa oil stored in glass bottles.

Keywords: black cumin seed (Nigella sativa) oil, cold press, nutritional supplements, soft gelatin capsule

Procedia PDF Downloads 364
5927 The Effect of the Structural Arrangement of Binary Bisamide Organogelators on their Self-Assembly Behavior

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Low-molecular-weight organogelators form gels by self-assembly into the crystalline network which immobilizes the organic solvent. For single bisamide organogelator systems, the effect of the molecular structure on the molecular interaction and their self-assembly behavior has been explored. The spatial arrangement of bisamide molecules in the gel-state is driven by a combination of hydrogen bonding and Van der Waals interactions. The hydrogen-bonding pattern between the amide groups of bisamide molecules is regulated by the number of methylene spacers; the even number of methylene spacers between two amide groups, in even-spaced bisamides, leads to the antiparallel position of amide groups within a molecule. An even-spaced bisamide molecule with antiparallel amide groups can make two pairs of hydrogen bonding with the molecules on the same plane. The odd-spaced bisamide with a parallel directionality of amide groups can form four independent hydrogen bonds with four other bisamide molecules on different planes. The arrangement of bisamide molecules in the crystalline state and the interaction of these molecules depends on the molecular structure, particularly the parity of the spacer length between the amide groups in the bisamide molecule. In this study, the directionality of amide groups has been exploited as a structural characteristic to affect the arrangement of molecules in the crystalline state and produce different binary bisamide gelators with different degrees of crystallinities. Single odd- and even-spaced single bisamides were synthesized and blended to produce binary bisamide organogelators to be characterized in order to understand the effect of the different directionality of amide groups on the molecular interaction in the crystalline state. The pattern of molecular interactions between these blended molecules, mixing or phase separation, has been monitored via differential scanning calorimetry (DSC) and crystallography techniques; X-ray powder diffraction (XRD) and Small-angle X-ray scattering (SAXS). The formation of lamellar structures for odd- and even-spaced bisamide gelators was confirmed by using SAXS and XRD techniques. DSC results have shown that binary bisamide organogelators with different parity of methylene spacers (odd-even binary blends) have a higher tendency for phase separation compared to the binary bisamides with the same parity (odd-odd or even-even binary blends). Phase separation in binary odd-even bisamides was confirmed by the presence of individual (100) reflections of odd and even lamellar structures. The structural characteristic of bisamide organogelators, the parity of spacer length in binary systems, is a promising tool to control the arrangement of molecules and their crystalline structure.

Keywords: binary bisamide organogelators, crystalline structure, phase separation, self-assembly behavior

Procedia PDF Downloads 178
5926 Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell

Authors: Mohammad Syahirin Aisha, Khairul Imran Sainan

Abstract:

The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air.

Keywords: air-breathing PEM fuel cell, cathode side, performance, variation in air condition

Procedia PDF Downloads 448
5925 Catalytic Alkylation of C2-C4 Hydrocarbons

Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat

Abstract:

Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.

Keywords: alkylation, butene, pillar structure, ruthenium catalyst

Procedia PDF Downloads 391
5924 Canned Sealless Pumps for Hazardous Applications

Authors: Shuja Alharbi

Abstract:

Oil and Gas industry has many applications considered as toxic or hazardous, where process fluid leakage is not permitted and leads to health, safety, and environmental impacts. Caustic/Acidic applications, High Benzene Concentrations, Hydrogen sulfide rich oil/gas as well as liquids operating above their auto-ignition temperatures are examples of such liquids that pose as a risk to the industry operation, and for those, special arrangements are in place to allow for the safe operation environment. Pumps in the industry requires special attention, specifically in the interface between the fluid and the environment, where the potential of leakages are foreseen. Mechanical Seals are used to contain the fluid within the equipment, but the prices are ever increasing for such seals, along with maintenance, design, and operating requirements. Several alternatives to seals are being employed nowadays, such as Sealless systems, which is hermitically sealed from the atmosphere and does not require sealing. This technology is considered relatively new and requires more studies to understand the limitations and factors associated from an owner and design perspective. Things like financial factors, maintenance factors, and design limitation should be studies further in order to have a mature and reliable technical solution available to end users.

Keywords: pump, sealless, selection, failure

Procedia PDF Downloads 86
5923 Phase Control in Population Inversion Using Chirped Laser

Authors: Avijit Datta

Abstract:

We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).

Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction

Procedia PDF Downloads 350
5922 Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation

Authors: Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites.

Keywords: nickel catalysts, syngas methanation, sodium, solution combustion method

Procedia PDF Downloads 396
5921 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 134
5920 A Study of Non Linear Partial Differential Equation with Random Initial Condition

Authors: Ayaz Ahmad

Abstract:

In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.

Keywords: drift term, finite time blow up, inverse problem, soliton solution

Procedia PDF Downloads 202
5919 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk

Authors: Muhammad Ajmal

Abstract:

- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.

Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties

Procedia PDF Downloads 185
5918 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X

Authors: Natasha Botha, Gary Corderely, Helen M. Inglis

Abstract:

With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.

Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage

Procedia PDF Downloads 234