Search results for: hole cleaning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 720

Search results for: hole cleaning

210 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 16
209 Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts

Authors: Driouiche Ali, Karmal Ilham

Abstract:

The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied.

Keywords: green inhibitors, localized irrigation, plant extracts, scaling inhibition

Procedia PDF Downloads 82
208 Characterization of White Spot Lesion Using Focused Ion Beam - Scanning Electron Microscopy

Authors: Malihe Moeinin, Robert Hill, Ferranti Wong

Abstract:

Background: A white spot lesion (WSL) is defined as subsurface enamel porosity from carious demineralisation on the smooth surfaces of the tooth. It appears as a milky white opacity. Lesions shown an apparently intact surface layer, followed underneath by the more porous lesion body. The small pores within the body of the lesion act as diffusion pathway for both acids and minerals, so allowing the demineralisation of enamel to occur at the advancing front of the lesion. Objectives: The objective is to mapthe porosity and its size on WSL with Focused Ion Bean- Scanning Electron Microscopy (FIB-SEM) Method: The basic method used for FIB-SEM consisted of depositing a one micron thick layer of platinum over 25μmx 25μm of the interest region of enamel. Then, making a rough cut (25μmx 5μmx 20μm) with 3nA current and 30Kv was applied with the help of drift suppression (DS), using a standard “cross-sectional” cutting pattern, which ended at the front of the deposited platinum layer. Two adjacent areas (25μmx 5μmx 20μm) on the both sides of the platinum layer were milled under the same conditions. Subsequent, cleaning cross-sections were applied to polish the sub-surface edge of interest running perpendicular to the surface. The "slice and view" was carried out overnight for milling almost 700 slices with 2Kv and 4nA and taking backscattered (BS) images. Then, images were imported into imageJ and analysed. Results: The prism structure is clearly apparent on FIB-SEM slices of WSL with the dissolution of prism boundaries as well as internal porosity within the prism itself. Porosity scales roughly 100-400nm, which is comparable to the light wavelength (500nm). Conclusion: FIB-SEM is useful to characterize the porosity of WSL and it clearly shows the difference between WSL and normal enamel.

Keywords: white spot lesion, FIB-SEM, enamel porosity, porosity

Procedia PDF Downloads 94
207 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 224
206 Repeated Batch Cultivation: A Novel Empty and Fill Strategy for the Enhanced Production of a Biodegradable Polymer, Polyhydroxy Alkanoate by Alcaligenes latus

Authors: Geeta Gahlawat, Ashok Kumar Srivastava

Abstract:

In the present study, a simple drain and fill protocol strategy of repeated batch was adopted for enhancement in polyhydroxyalkanoates (PHAs) production using alcaligenes latus DSM 1124. Repeated batch strategy helped in increasing the longevity of otherwise decaying culture in the bioreactor by supplementing fresh substrates during each cycle of repeated-batch. The main advantages of repeated batch are its ease of operation, enhancement of culture stability towards contamination, minimization of pre-culture effects and maintenance of organism at high growth rates. The cultivation of A. latus was carried out in 7 L bioreactor containing 4 L optimized nutrient medium and a comparison with the batch mode fermentation was done to evaluate the performance of repeated batch in terms of PHAs accumulation and productivity. The statistically optimized medium recipe consisted of: 25 g/L Sucrose, 2.8 g/L (NH4)2SO4, 3.25 g/L KH2PO4, 3.25 g/L Na2HPO4, 0.2 g/L MgSO4, 1.5 mL/L trace element solution. In this strategy, 20% (v/v) of the culture broth was removed from the reactor and supplemented with an equal volume of fresh medium when sucrose concentration inside the reactor decreased below 8 g/L. The fermenter was operated for three repeated batch cycles and fresh nutrient feeding was done at 27 h, 48 h, and 60 h. Repeated batch operation resulted in a total biomass of 27.89 g/L and PHAs concentration 20.55 g/L at the end of 69 h which was a marked improvement as compared to batch cultivation (8.71 g/L biomass and 6.24 g/L PHAs). This strategy demonstrated 3.3 fold and 1.8 fold increase in PHAs concentration and volumetric productivity, respectively as compared to batch cultivation. Repeated batch cultivation strategy had also the benefit of avoiding non-productive time period required for cleaning, refilling and sterilization of bioreactor, thereby increasing the overall volumetric productivity and making the entire process cost-effective too.

Keywords: alcaligenes, biodegradation, polyhydroxyalkanoates, repeated batch

Procedia PDF Downloads 369
205 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
204 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
203 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 394
202 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes

Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon

Abstract:

This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.

Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux

Procedia PDF Downloads 165
201 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 391
200 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.

Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy

Procedia PDF Downloads 204
199 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution

Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti

Abstract:

Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.

Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation

Procedia PDF Downloads 522
198 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying

Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco

Abstract:

The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.

Keywords: frying, HPLC, salting, swordfish, vitamins

Procedia PDF Downloads 126
197 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
196 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid

Authors: Byung Il You, Ryun Oh, Gyo Woo Lee

Abstract:

Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).

Keywords: manhole lid, iron frame, structural design, computer simulation

Procedia PDF Downloads 275
195 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 205
194 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach

Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü

Abstract:

Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.

Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction

Procedia PDF Downloads 33
193 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 234
192 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 216
191 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP

Authors: Diptiman Dinda, Shyamal Kumar Saha

Abstract:

In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.

Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection

Procedia PDF Downloads 440
190 Sustainable Milling Process for Tensile Specimens

Authors: Shilpa Kumari, Ramakumar Jayachandran

Abstract:

Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.

Keywords: dry milling, tensile testing, wet milling, 6xxx alloy

Procedia PDF Downloads 198
189 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 67
188 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 199
187 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 75
186 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 104
185 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
184 Recycling, Reuse and Reintegration of Steel Plant Fines

Authors: R. K. Agrawal, Shiv Agrawal

Abstract:

Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.

Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter

Procedia PDF Downloads 391
183 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90

Authors: Tamer M. Shehata

Abstract:

Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.

Keywords: mucoadhesive, microparticles, technology, diabetis

Procedia PDF Downloads 294
182 Preparing Curved Canals Using Mtwo and RaCe Rotary Instruments: A Comparison Study

Authors: Mimoza Canga, Vito Malagnino, Giulia Malagnino, Irene Malagnino

Abstract:

Objective: The objective of this study was to compare the effectiveness of Mtwo and RaCe rotary instruments, in cleaning and shaping root canals curvature. Material and Method: The present study was conducted on 160 simulated canals in resin blocks, with an angle curvature 15°-30°. These 160 simulated canals were divided into two groups, where each group consisted of 80 blocks. Each group was divided into two subgroups (n=40 canals each). The simulated canals subgroups were prepared with Mtwo and RaCe rotary nickel-titanium instruments. The root canals were measured at four different points of reference, starting at 13 mm from the orifice. In the first group, the canals were prepared using Mtwo rotary system (VDW, Munich, Germany). The Mtwo files used were: 10/0.04, 15/0.05, 20/0.06, and 25/0.06. These instruments entered in the full length of the canal. Each file was rotated in the canal until it reached the apical point. In the second group, the canals were prepared using RaCe instruments (La Chaux-De-Fonds, Switzerland), performing the crown down technique, using the torque electric control motor (VDWCO, Munich, Germany), with 600 RPM and 2n/cm as follow: ≠40/0.10, ≠35/0.08, ≠30/0.06, ≠25/0.04, ≠25/0.02. The data were recorded using SPSS version 23 software (Microsoft, IL, USA). Data analysis was done using ANOVA test. Results: The results obtained by using the Mtwo rotary instruments, showed that these instruments were able to clean and shape in the right-to-left motion curved canals, at different levels, without any deviation, and in perfect symmetry, with a P-value=0.000. The data showed that the greater the depth of the root canal, the greater the deviations of the RaCe rotary instruments. These deviations occurred in three levels, which are: S2(P=0.004), S3( P=0.007), S4(P=0.009). The Mtwo files can go deeper and create a greater angle in S4 level (21°-28°), compared to RaCe instruments with an angle equal to 19°-24°. Conclusion: The present study noted a clinically significant difference between Mtwo rotary instruments and RaCe rotary files used for the canal preparation and indicated that Mtwo instruments are a better choice for the curved canals.

Keywords: canal curvature, canal preparation, Mtwo, RaCe, resin blocks

Procedia PDF Downloads 122
181 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 108