Search results for: hepatic lesion segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 845

Search results for: hepatic lesion segmentation

335 Antiplatelet Activity of Nitrated Fatty Acids from Tomato Pomace

Authors: Lyanne Rodriguez, Eduardo Fuente, Andrés Trostchansky, Ivan Palomo

Abstract:

Cardiovascular diseases (CVD) are the leading cause of death in the world. The development of platelet-rich thrombi has been considered a trigger for acute cardiovascular events. A healthy diet, rich in fruit and vegetables, has been related to increased protection against cardiovascular events. Previous studies have observed that tomato pomace has a potent antiplatelet activity, due could be attributed to its high content of fatty acids (> 30%). It has been shown that unsaturated fatty acids can undergo endogenous intracellular nitration reactions during digestion after lipid consumption. Additionally, nitrated fatty acids (NO2-FA) can significantly reduce atherosclerotic lesion formation, inhibiting the expression of adhesion molecules on dysfunctional endothelium and platelet activation. In this work, we have proposed the nitration of fatty acids present in tomato pomace to improve its antiplatelet action. The gastric digestion of the tomato pomace allowed the nitration of the fatty acids, while by HPLC/MS/MS we were able to identify and quantify the nitrated fatty acids. The nitrated tomase extracts showed antiplatelet potential when platelets were stimulated with TRAP-6 and collagen. This activity was related to the presence of nitrated linoleic acid, which inhibited platelet activation by flow cytometry. The knowledge about the antiplatelet activity of nitrated fatty acids from tomato pomace will further develop new and more effective agents.

Keywords: cardiovascular, tomato extracts, nitrated fatty acids, antiplatelet activity

Procedia PDF Downloads 67
334 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 339
333 Parallel Genetic Algorithms Clustering for Handling Recruitment Problem

Authors: Walid Moudani, Ahmad Shahin

Abstract:

This research presents a study to handle the recruitment services system. It aims to enhance a business intelligence system by embedding data mining in its core engine and to facilitate the link between job searchers and recruiters companies. The purpose of this study is to present an intelligent management system for supporting recruitment services based on data mining methods. It consists to apply segmentation on the extracted job postings offered by the different recruiters. The details of the job postings are associated to a set of relevant features that are extracted from the web and which are based on critical criterion in order to define consistent clusters. Thereafter, we assign the job searchers to the best cluster while providing a ranking according to the job postings of the selected cluster. The performance of the proposed model used is analyzed, based on a real case study, with the clustered job postings dataset and classified job searchers dataset by using some metrics.

Keywords: job postings, job searchers, clustering, genetic algorithms, business intelligence

Procedia PDF Downloads 329
332 Rhythmic Prioritisation as a Means of Compositional Organisation: Analysing Meshuggah’s “do Not Look Down”

Authors: Nicholas Freer

Abstract:

Rhythmic complexity in progressive metal is a developing area of analysis, particularly the interpretation of hyper-metric time spans as hierarchically significant rhythmic units of compositional organisation (Pieslak 2007, Charupakorn 2012, Capuzzo 2018, Calder 2018, Lucas 2018, Hannan 2020). This paper adds to this developing area by considering the relationships between the concepts of tactus, metric imposition, polymeter and rhythmic parallax in the Meshuggah composition “Do Not Look Down”. By considering an architectonic rhythmic framework within “Do Not Look Down” as the controlling organisation mechanism, an exploration of the interaction between distinct rhythmic layers and the composition’s formal segmentation and harmony (as riffs), reveals a pervasive structural misalignment between these elements. By exhibiting how Meshuggah’s manipulations of rhythmic complexities deliberately blur structural boundaries, creating misalignments in a flat approach to temporal partitioning (Nieto 2014), rhythmic characteristics of Meshuggah and the genre of Djent are exposed.

Keywords: hypermeter, rhythmic parallax, meshuggah, temporal partitioning

Procedia PDF Downloads 78
331 3D Images Representation to Provide Information on the Type of Castella Beams Hole

Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi

Abstract:

Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.

Keywords: digital image, image processing, edge detection, grayscale, castella beams

Procedia PDF Downloads 141
330 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 526
329 Uptake of Hepatitis B Vaccine among Hepatitis C Positive Patients and Their Vaccine Response in Myanmar

Authors: Zaw Z Aung

Abstract:

Background: High-risk groups for hepatitis B infection (HBV) are people who injected drugs (PWID), men who have sex with men (MSM), people living with HIV (PLHIV) and persons with hepatitis C (HCV), etc. HBV/HCV coinfected patients are at increased risk of cirrhosis, hepatic decompensation and hepatocellular carcinoma. To the best of author’s knowledge, there is currently no data for hepatitis B vaccine utilization in HCV positive patients and their antibody response. Methodology: From February 2018 to May 2018, consented participants at or above 18 years who came to the clinic in Mandalay were tested with the anti-HCV rapid test. Those who tested HCV positive (n=168) were further tested with hepatitis B profile and asked about their previous hepatitis B vaccination history and risk factors. Results: Out of 168 HCV positive participants, three were excluded for active HBV infections. The remaining 165 were categorized into previously vaccinated 64% (n=106) and unvaccinated 36% (n=59) There were three characteristics groups- PWID monoinfected (n=77), General Population (GP) monoinfected (n=22) and HIV/HCV coinfected participants (n=66). Unvaccinated participants were highest in HIV/HCV, with 68%(n=45) followed by GP (23%, n=5) and PWID (12%, n=9). Among previously vaccinated participants, the highest percentage was PWID (88%, n=68), the second highest was GP (77%, n=17) and lowest in HIV/HCV patients (32%, n=21). 63 participants completed third doses of vaccination (PWID=36, GP=13, HIV/HCV=14). 53% of participants who completed 3 dose of hepatitis B were non-responders (n=34): HIV/HCV (86%, n=12), PWID (44%, n=16), and GP (46%, n=6) Conclusion: Even in the presence of effective and safe hepatitis B vaccine, uptake is low among high risk groups especially PLHIV that needs to be improved. Integration or collaboration of hepatitis B vaccination program, HIV/AIDS and hepatitis C treatment centers is desirable. About half of vaccinated participants were non-responders so that optimal doses, schedule and follow-up testing need to be addressed carefully for those groups.

Keywords: Hepatitis B vaccine, Hepatitis C, HIV, Myanmar

Procedia PDF Downloads 143
328 Analysis of Tempo Indications, Segmentations, and Musical Ideas in Mozart’s Piano Sonatas

Authors: Parham Bakhtiari

Abstract:

Musical compositions are typically examined from various perspectives, with a focus on elements such as melody, harmony, and rhythm. This study provides a comprehensive analysis of tempo indications, segmentations, and musical ideas in Wolfgang Amadeus Mozart's piano sonatas, highlighting the intricate relationship between these elements and their contribution to the overall interpretative landscape of his works. Through a detailed examination of select sonatas, the research categorizes tempo markings and explores their implications for performance practice, emphasizing how Mozart's choices reflect his compositional intentions and the stylistic conventions of the Classical era. Additionally, the segmentation of musical phrases is analyzed to reveal patterns of thematic development and transition, demonstrating how Mozart employs structural techniques to enhance expressive depth. By synthesizing these aspects, the paper aims to offer insights into the complexities of Mozart's musical language, encouraging a deeper appreciation of his sonatas both in scholarly discourse and practical performance.

Keywords: music, Mozart, piano, tempo, sonata

Procedia PDF Downloads 24
327 Propranalol is Not Effective in Preventing the Progression to Severe Portal Hypertensive Gastropathy in Cirrhotic Patients who Had Undergone Variceal Eradication: A Randomised Controlled Trial

Authors: Jeffey George, Varghese Thomas

Abstract:

Background and Objectives: PHG is an important source of gastrointestinal bleeding in patients with portal hypertension. Aim: To assess the progression to severe portal hypertensive gastropathy(PHG) in patients with cirrhosis who were treated with maximum tolerated dose of propranalol, after variceal eradication to grade II or below. Methods: Cirrhotic patients(child A and B) presenting with upper gastrointestinal bleeding with endoscopic findings of mild or no PHG were followed up over 6 months after variceal eradication to assess the progression to severe PHG. Included patients were randomised to either maximum tolerated doses of propranalol (group A) or to no treatment (group B). Primary end point of the study were the development of gastrointestinal bleed, evidence of hepatic decompensation and death. Progression to severe PHG were compared between the two groups. Results: 56 patients (49 males) were enrolled (group A = 28, group B = 28). 8 patients were excluded from final analysis (gi bleed=5, encephalopathy=2,HCC=1 including 4 deaths).3 patients were lost to follow-up, and 1 developed intolerance to propranalol. Mean dose of propranalol used was 60 mg per day. Progression to severe PHG in the fundus over 6 months was 23.8% in group A versus 15.8 % in group B (p = 0.52). Severe PHG was noted in body in 14.3% in group A versus 21.1% in group B (p = 0.57). 23.8 % in group A had progression to severe PHG compared with 15.8 % in group B (p =0.52). There was no statistically significant difference in the progression of PHG between the two groups(p=0.43). Conclusion: In this short term study propranalol was found not to prevent the progression to severe portal hypertensive gastropathy in cirrhotic patients who had undergone endotherapy for esophageal varices.

Keywords: propranalol, portal hypertensive gastropathy, cirrhotic patients, gastroenterology

Procedia PDF Downloads 345
326 Metabolome-based Profiling of African Baobab Fruit (Adansonia Digitata L.) Using a Multiplex Approach of MS and NMR Techniques in Relation to Its Biological Activity

Authors: Marwa T. Badawy, Alaa F. Bakr, Nesrine Hegazi, Mohamed A. Farag, Ahmed Abdellatif

Abstract:

Diabetes Mellitus (DM) is a chronic disease affecting a large population worldwide. Africa is rich in native medicinal plants with myriad health benefits, though less explored towards the development of specific drug therapy as in diabetes. This study aims to determine the in vivo antidiabetic potential of the well-reported and traditionally used fruits of Baobab (Adansonia digitata L.) using STZ induced diabetic model. The in-vitro cytotoxic and antioxidant properties were examined using MTT assay on L-929 fibroblast cells and DPPH antioxidant assays, respectively. The extract showed minimal cytotoxicity with an IC50 value of 105.7 µg/mL. Histopathological and immunohistochemical investigations showed the hepatoprotective and the renoprotective effects of A. digitata fruits’ extract, implying its protective effects against diabetes complications. These findings were further supported by biochemical assays, which showed that i.p., injection of a low dose (150 mg/kg) of A. digitata twice a week lowered the fasting blood glucose levels, lipid profile, hepatic and renal markers. For a comprehensive overview of extract metabolites composition, ultrahigh performance (UHPLC) analysis coupled to high-resolution tandem mass spectrometry (HRMS/MS) in synchronization with molecular networks led to the annotation of 77 metabolites, among which 50% are reported for the first time in A. digitata fruits.

Keywords: adansonia digital, diabetes mellitus, metabolomics, streptozotocin, Sprague, dawley rats

Procedia PDF Downloads 164
325 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract:

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

Keywords: dropwise condensation, textured surface, image processing, watershed

Procedia PDF Downloads 223
324 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 176
323 Preventive Effect of Zinc on Nickel Hepatotoxicity and Nephrotoxicity in Albino (Wistar) Rats

Authors: Zine Kechrid, Samira Bouhalit

Abstract:

Aim: We studied the effect of intraperitonial zinc treatment on nickel sulphate-induced hepatotoxicity and nephrotoxicity in Wistar strain male albino rats. Materials and Methods: Liver and kidney dysfunction parameters represented by aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), blood glucose, serum total protein, serum urea, serum creatinine, and serum belurebin were estimated. Liver glutathione level, catalase and GPx activities were also determined in liver as indicators of oxidative damage. Result: Nickel treatment led to high serum glucose concentration and produced hepatotoxicity and nephrotoxicity characterized by increasing GPT, GOT and alkaline phosphatase activities, serum total protein, serum urea, serum creatinine and serum belurebin concentrations. In addition, liver glutathione level, catalase and GSH-Px activities diminished due to high lipid peroxidation. The simultaneous administration of zinc with nickel sulphate resulted in a remarkable improvement of the previous parameters compared with rats treated with nickel alone. Conclusion: In conclusion, nickel sulphate led to liver and kidney dysfunctions and hepatic lipid peroxidation in animals, but simultaneous treatment with zinc offers a relative protection against nickel induced hepatotoxicity, nephrotoxicity and lipid peroxidation.

Keywords: nickel, zinc, rats, GOT, GPT, nephrotoxicity, hepatotoxicity

Procedia PDF Downloads 451
322 Typology of Gaming Tourists Based on the Perception of Destination Image

Authors: Mi Ju Choi

Abstract:

This study investigated the perception of gaming tourists toward Macau and developed a typology of gaming tourists. The 1,497 responses from tourists in Macau were collected through convenience sampling method. The dimensions of multi-culture, convenience, economy, gaming, and unsafety, were subsequently extracted as the factors of perception of gaming tourists in Macau. Cluster analysis was performed using the delineated factors (perception of tourists on Macau). Four heterogonous groups were generated, namely, gaming lovers (n = 467, 31.2%), exotic lovers (n = 509, 34.0%), reasonable budget seekers (n = 269, 18.0%), and convenience seekers (n = 252, 16.8%). Further analysis was performed to investigate any difference in gaming behavior and tourist activities. The findings are expected to contribute to the efforts of destination marketing organizations (DMOs) in establishing effective business strategies, provide a profile of gaming tourists in certain market segments, and assist DMOs and casino managers in establishing more effective marketing strategies for target markets.

Keywords: destination image, gaming tourists, Macau, segmentation

Procedia PDF Downloads 301
321 Orotic Acid-Induced Fatty Liver in Mink: Characterization and Testing of Bioactive Peptides for Prevention and Treatment

Authors: Don Buddika Oshadi Malaweera, Lora Harris, Bruce Rathgeber, Chibuike C. Udenigwe, Kirsti Rouvinen-Watt

Abstract:

Fatty liver disease is among the three most severe health concerns for mink and believed to occur through the same mechanism as nursing sickness. In North America, nursing sickness affects about 45% of mink farms and in Canada, approximately 50,000 mink females is affected annually. Orotic acid (OA) plays a critical role in lipid metabolism and can increase hepatic lipids by enhancing Sterol regulatory element binding protein-1c expression and decreasing Carnitine palmitoyl transferase I activity. This study was conducted to identify particular pathways and regulatory control points involved in fatty liver development, and evaluate the effectiveness of arginine and bioactive peptides for prevention and treatment of fatty liver disease in mink. A total of 45 mink were used in 9 treatments. The experimental diets consisted of 1% OA, 2% L-arginine and 5% of whey protein hydrolysates. At the end of 10 days of experimental period, the mink were anaesthetized, sampled for blood and euthanized, samples were obtained for histological, biochemical and molecular assays. The blood samples will be analyzed for clinical chemistry and triacylglycerol. The liver samples will be analyzed for total lipid content and analyzed for 6 genes of interest involved in adipogenic transformation, ER stress, and liver inflammation.

Keywords: fatty liver, L-arginine, mink, orotic acid, whey protein hydrolysates

Procedia PDF Downloads 302
320 An Exploratory Study of Potential Cruisers Preferences Using Choice Experiment and Latent Class Modelling

Authors: Renuka Mahadevan, Sharon Chang

Abstract:

This exploratory study is based on potential cruisers’ monetary valuation of cruise attributes. Using choice experiment, monetary trade-offs between four different cruise attributes are examined with Australians as a case study. We found 50% of the sample valued variety of onboard cruise activities the least while 30% were willing to pay A$87 for cruise-organised activities per day, and the remaining 20% regarded an ocean view to be most valuable at A$125. Latent class modelling was then applied and results revealed that potential cruisers’ valuation of the attributes can be used to segment the market into adventurers, budget conscious and comfort lovers. Evidence showed that socio demographics are not as insightful as lifestyle preferences in developing cruise packages and pricing that would appeal to potential cruisers. Marketing also needs to counter the mindset of potential cruisers’ belief that cruises are often costly and that cruising can be done later in life.

Keywords: latent class modelling, choice experiment, potential cruisers, market segmentation, willingness to pay

Procedia PDF Downloads 81
319 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers

Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka

Abstract:

The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.

Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose

Procedia PDF Downloads 619
318 Response of Newzealand Rabbits to Drinking Water Treated with PolyDADMAC

Authors: Amna Beshir Medani Ahmed, Samia Mohammed Ali El Badwi, Ahmed El Amin Mohammed

Abstract:

This work has been managed to yield toxicity information on water treatment agents in the Sudan namely polyDADMAC, using New Zealand rabbits at multiple daily oral doses for a period of 10 weeks. Thirty-three heads of New Zealand rabbits were divided into 11 groups, each of three. Group 1 animals were the undosed controls. Test groups of either species were given polyDADMAC at similar dose rates of 0.5, 2.5, 4.5, 10, 15, 20, 25, 50, 100 and 150 mg/kg body weight respectively for groups 2,3,4,5,6,7,8,9,10 and 11. Clinical signs were closely observed with postmortem and histopathological examinations. Chemical investigations included enzymatic concentrations of ALP, GOT, CK, GPT and LDH together with hematological changes in Hb, PCV, RBCs and WBCs. Mortalities occurred to variable degrees irrespective of the dose level. On polyDADMAC challenge, the test species showed clinical signs of dullness, loss of weight, anorexia, diarrhea, difficulty in respiration, hind limb paralysis and recumbency. Notably oral dosing with polyDADMAC caused lung emphysema, hepatic and renal dysfunctions, irregularity in enzymatic activities and serum metabolites, sloughing of intestinal epithelium, decreased electrolytes in serum, and splenic haemosiderosis. On evaluation of the above results, polyDADMAC was considered toxic to New Zealand rabbits at all dose rates tried. Practical implications of the results were highlighted and suggestions for future work were put forward.

Keywords: polydiallyldiethylaluminiumchloride (polyDADMAC), nubian goats, toxicity of drinking water, treatment of drinking water using chemicals

Procedia PDF Downloads 372
317 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 521
316 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 423
315 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 118
314 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: big data, image processing, multispectral, principal component analysis

Procedia PDF Downloads 175
313 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 106
312 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
311 Evaluation of Insulin Sensitizing Effects of Different Fractions from Total Alcoholic Extract of Moringa oleifera Lam. Bark in Dexamethasone-Induced Insulin Resistant Rats

Authors: Hasanpasha N. Sholapur, Basanagouda M.Patil

Abstract:

Alcoholic extract of the bark of Moringa oleifera Lam. (MO), (Moringaceae), has been evaluated experimentally in the past for its insulin sensitizing potentials. In order to explore the possibility of the class of phytochemical(s) responsible for this experimental claim, the alcoholic extract was fractionated into non-polar [petroleum ether (PEF)], moderately non-polar [ethyl acetate (EAF)] and polar [aqueous (AQF)] fractions. All the fractions and pioglitazone (PIO) as standard (10mg/kg were p.o., once daily for 11 d) were investigated for their chronic effect on fasting plasma glucose, triglycerides, total cholesterol, insulin, oral glucose tolerance and acute effect on oral glucose tolerance in dexamethasone-induced (1 mg/kg s.c., once daily for 11 d) chronic model and acute model (1 mg/kg i.p., for 4 h) respectively for insulin resistance (IR) in rats. Among all the fractions tested, chronic treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced IR, indicated by prevention of hypertriglyceridemia, hyperinsulinemia and oral glucose intolerance, whereas treatment with AQF (95 mg/kg) prevented hepatic IR but not peripheral IR. In acute study single dose treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced oral glucose intolerance, fraction PEF did not show any effect on these parameters in both the models. The present study indicates that the triterpenoidal and the phenolic class of phytochemicals detected in EAF of alcoholic extract of MO bark may be responsible for the prevention of dexamethasone-induced insulin resistance in rats.

Keywords: Moringa oleifera, insulin resistance, dexamethasone, serum triglyceride, insulin, oral glucose tolerance test

Procedia PDF Downloads 372
310 Hepatoprotective Evaluation of Potent Antioxidant Fraction from Urtica dioica L.: In vitro and In vivo Studies

Authors: Bhuwan C. Joshi, Atish Prakash, Ajudhia N. Kalia

Abstract:

Ethnopharmacological relevance: The plant Urtica dioica L. (Urticaceae) is used in various diseases including hepatic ailments. Traditionally, the leaves and roots of the plant are used in jaundice. Objective: The aim of the present work was to evaluate hepatoprotective potential of potent antioxidant from Urtica dioica L. against CCl4 induced hepatotoxicity in-vitro and in-vivo model. Materials and methods: Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH radicals scavenging assay. Fractions were subjected to in-vitro cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo study. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Results and conclusion: The ethyl acetate fraction (EAF) of Urtica. dioica L. possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 µg/ml). The in-vitro cell line study showed EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and tissue. Column chromatography of most potent antioxidant fraction (EAF) leads to the isolation of 4-hydroxy-3-methoxy cinnamic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.

Keywords: Urtica dioica L., antioxidant, HepG2 cell line, hepatoprotective

Procedia PDF Downloads 424
309 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 81
308 Macular Ganglion Cell Inner Plexiform Layer Thinning

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography

Procedia PDF Downloads 337
307 Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia

Authors: Karthika Durairaj, Buvaneswari G., Gowdham M., Gilles M., Velmurugan G.

Abstract:

Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment.

Keywords: hyperglycaemia, endocrine-disrupting chemicals, gut microbiota, host metabolism

Procedia PDF Downloads 40
306 The Usefulness and Limitations of Manual Aspiration Immediately after Pneumothorax Complicating Percutaneous CT Guided Lung Biopsies: A Retrospective 9-Year Review from a Large Tertiary Centre

Authors: Niall Fennessy, Charlotte Yin, Vineet Gorolay, Michael Chan, Ilias Drivas

Abstract:

Background: The aim of this study was to evaluate the effect of manual aspiration of air from the pleural cavity in mitigating the need for chest drain placement after a CT-guided lung biopsy. Method: This is a single institution retrospective review of CT-guided lung biopsies performed on 799 patients between September 2013 and May 2021 in a major tertiary hospital. Percutaneous manual aspiration of air was performed in 104/306 patients (34%) with pneumothoraxes as a preventative measure. Simple and multivariate analysis was performed to identify independent risk factors (modifiable and nonmodifiable) for the success of manual aspiration in mitigating the need for chest drain insertion. Results: The overall incidence of pneumothorax was 37% (295/799). Chest drains were inserted for 81/295 (27%) of the pneumothoraxes, representing 81/799 (10%) of all CT-guided lung biopsies. Of patients with pneumothoraces, 104 (36%) underwent percutaneous aspiration via either the coaxial guide needle or an 18 or 20G intravenous catheter attached to a three-way stopcock and syringe. Amongst this group, 13 patients (13%) subsequently required chest drain insertion. The success of percutaneous aspiration in avoiding subsequent pleural drain insertion decreased with aspiration volume >500mL, radial pneumothorax depth >3cm, increased subpleural depth of the lesion, and the presence of background emphysema.

Keywords: computed tomography, lung biopsy, pneumothorax, manual aspiration, chest drainage

Procedia PDF Downloads 175